// A Small Compiler for a Simple Functional Language
// (includes an external lexer and parser)
import java.io._
object Compiler {
// Abstract syntax trees for the Fun language
abstract class Exp extends Serializable
abstract class BExp extends Serializable
abstract class Decl extends Serializable
case class Def(name: String, args: List[String], body: Exp) extends Decl
case class Main(e: Exp) extends Decl
case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp
// compiler - built-in functions
// copied from http://www.ceng.metu.edu.tr/courses/ceng444/link/jvm-cpm.html
//
val library = """
.class public XXX.XXX
.super java/lang/Object
.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method
.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return
.end method
"""
// calculating the maximal needed stack size
def max_stack_exp(e: Exp): Int = e match {
case Call(_, args) => args.map(max_stack_exp).sum
case If(a, e1, e2) => max_stack_bexp(a) + (List(max_stack_exp(e1), max_stack_exp(e2)).max)
case Write(e) => max_stack_exp(e) + 1
case Var(_) => 1
case Num(_) => 1
case Aop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
case Sequence(e1, e2) => List(max_stack_exp(e1), max_stack_exp(e2)).max
}
def max_stack_bexp(e: BExp): Int = e match {
case Bop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
}
// for generating new labels
var counter = -1
def Fresh(x: String) = {
counter += 1
x ++ "_" ++ counter.toString()
}
// convenient string interpolations
// for instructions, labels and methods
import scala.language.implicitConversions
import scala.language.reflectiveCalls
implicit def sring_inters(sc: StringContext) = new {
def i(args: Any*): String = " " ++ sc.s(args:_*) ++ "\n"
def l(args: Any*): String = sc.s(args:_*) ++ ":\n"
def m(args: Any*): String = sc.s(args:_*) ++ "\n"
}
type Env = Map[String, Int]
// compile expressions
def compile_exp(a: Exp, env : Env) : String = a match {
case Num(i) => i"ldc $i"
case Var(s) => i"iload ${env(s)}"
case Aop("+", a1, a2) => compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"iadd"
case Aop("-", a1, a2) => compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"isub"
case Aop("*", a1, a2) => compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"imul"
case Aop("/", a1, a2) => compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"idiv"
case Aop("%", a1, a2) => compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"irem"
case If(b, a1, a2) => {
val if_else = Fresh("If_else")
val if_end = Fresh("If_end")
compile_bexp(b, env, if_else) ++
compile_exp(a1, env) ++
i"goto $if_end" ++
l"$if_else" ++
compile_exp(a2, env) ++
l"$if_end"
}
case Call(name, args) => {
val is = "I" * args.length
args.map(a => compile_exp(a, env)).mkString ++
i"invokestatic XXX/XXX/$name($is)I"
}
case Sequence(a1, a2) => {
compile_exp(a1, env) ++ i"pop" ++ compile_exp(a2, env)
}
case Write(a1) => {
compile_exp(a1, env) ++
i"dup" ++
i"invokestatic XXX/XXX/write(I)V"
}
}
// compile boolean expressions
def compile_bexp(b: BExp, env : Env, jmp: String) : String = b match {
case Bop("==", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpne $jmp"
case Bop("!=", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpeq $jmp"
case Bop("<", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpge $jmp"
case Bop("<=", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpgt $jmp"
}
// compile function for declarations and main
def compile_decl(d: Decl) : String = d match {
case Def(name, args, a) => {
val env = args.zipWithIndex.toMap
val is = "I" * args.length
m".method public static $name($is)I" ++
m".limit locals ${args.length.toString}" ++
m".limit stack ${1 + max_stack_exp(a)}" ++
l"${name}_Start" ++
compile_exp(a, env) ++
i"ireturn" ++
m".end method\n"
}
case Main(a) => {
m".method public static main([Ljava/lang/String;)V" ++
m".limit locals 200" ++
m".limit stack 200" ++
compile_exp(a, Map()) ++
i"invokestatic XXX/XXX/write(I)V" ++
i"return" ++
m".end method\n"
}
}
// main compiler functions
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
def deserialise[T](fname: String) : T = {
val in = new ObjectInputStream(new FileInputStream(fname))
val data = in.readObject.asInstanceOf[T]
in.close
data
}
def compile(class_name: String) : String = {
val ast = deserialise[List[Decl]](class_name ++ ".prs")
val instructions = ast.map(compile_decl).mkString
(library + instructions).replaceAllLiterally("XXX", class_name)
}
def compile_to_file(class_name: String) = {
val output = compile(class_name)
scala.tools.nsc.io.File(s"${class_name}.j").writeAll(output)
}
import scala.sys.process._
def compile_run(class_name: String) : Unit = {
compile_to_file(class_name)
(s"java -jar jvm/jasmin-2.4/jasmin.jar ${class_name}.j").!!
println("Time: " + time_needed(2, (s"java ${class_name}/${class_name}").!))
}
// some examples of .fun files
//compile_file("fact")
//compile_run("defs")
//compile_run("fact")
def main(args: Array[String]) =
compile_run(args(0))
}