// Version with simplification during derivatives;
// this keeps the regular expressions small, which
// is good for run-time
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class NTIMES(r: Rexp, n: Int) extends Rexp
case class CSET(cs: Set[Char]) extends Rexp
case class CFUN(f: Char => Bool) extends Rexp
CSET(('a' to 'z').toSet)
val CSET2(cs: Set[Char]) = CFUN((c:Char) => cs.contains(c))
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case NTIMES(r, i) => if (i == 0) true else nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
case NTIMES(r, i) =>
if (i == 0) ZERO else SEQ(der(c, r), NTIMES(r, i - 1))
}
def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => (simp(r1), simp(r2)) match {
case (ZERO, r2s) => r2s
case (r1s, ZERO) => r1s
case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
}
case SEQ(r1, r2) => (simp(r1), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, ONE) => r1s
case (r1s, r2s) => SEQ(r1s, r2s)
}
case r => r
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))
}
// main matcher function
def matcher(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r))
//one or zero
def OPT(r: Rexp) = ALT(r, ONE)
// Test Cases
//evil regular expressions
def EVIL1(n: Int) = SEQ(NTIMEemacs re3S(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
//test: (a?{n}) (a{n})
for (i <- 1 to 8001 by 1000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i))))
}
for (i <- 1 to 8001 by 1000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i))))
}
//test: (a*)* b
for (i <- 1 to 6000001 by 500000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i))))
}
for (i <- 1 to 6000001 by 500000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i))))
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case NTIMES(r, _) => 1 + size(r)
}
// now the size of the derivatives grows
// much, much slower
size(ders("".toList, EVIL2)) // 5
size(ders("a".toList, EVIL2)) // 8
size(ders("aa".toList, EVIL2)) // 8
size(ders("aaa".toList, EVIL2)) // 8
size(ders("aaaa".toList, EVIL2)) // 8
size(ders("aaaaa".toList, EVIL2)) // 8