slides/slides06.tex
author Christian Urban <christian.urban@kcl.ac.uk>
Sat, 17 Oct 2020 13:14:19 +0100
changeset 782 a26a20acd1c2
parent 750 e93a9e74ca8e
child 799 85267be9a5ed
permissions -rw-r--r--
updated

% !TEX program = xelatex
\documentclass[dvipsnames,14pt,t,xelatex,aspectratio=169,xcolor={table}]{beamer}
\usepackage{../slides}
\usepackage{../graphics}
\usepackage{../langs}
\usepackage{../data}
\usepackage{../grammar}

% beamer stuff 
\renewcommand{\slidecaption}{CFL 06, King's College London}


\newcommand{\bl}[1]{\textcolor{blue}{#1}}       
%\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
\newcommand{\qq}{\mbox{\texttt{"}}}

\begin{document}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{%
  \begin{tabular}{@ {}c@ {}}
  \\[-3mm]
  \LARGE Compilers and \\[-2mm] 
  \LARGE Formal Languages\\[3mm] 
  \end{tabular}}

  \normalsize
  \begin{center}
  \begin{tabular}{ll}
    Email:  & christian.urban at kcl.ac.uk\\
    %Office Hours: & Thursdays 12 -- 14\\
    %Location: & N7.07 (North Wing, Bush House)\\
    Slides \& Progs: & KEATS (also homework is there)\\  
  \end{tabular}
  \end{center}

  \begin{center}
    \begin{tikzpicture}
      \node[drop shadow,fill=white,inner sep=0pt] 
      {\footnotesize\rowcolors{1}{capri!10}{white}
        \begin{tabular}{|p{4.8cm}|p{4.8cm}|}\hline
          1 Introduction, Languages          & \cellcolor{blue!50} 6 While-Language \\
          2 Regular Expressions, Derivatives & 7 Compilation, JVM \\
          3 Automata, Regular Languages      & 8 Compiling Functional Languages \\
          4 Lexing, Tokenising               & 9 Optimisations \\
          5 Grammars, Parsing                & 10 LLVM \\ \hline
        \end{tabular}%
      };
    \end{tikzpicture}
  \end{center}
  
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}[c]
% \small
% \mbox{}\\[5mm]
% %\begin{textblock}{10}(3,5)
% \begin{tikzpicture}[scale=1.5,
%                     node distance=1cm,
%                     every node/.style={minimum size=7mm}]
% \node (r1)  {\bl{$r_1$}};
% \node (r2) [right=of r1] {\bl{$r_2$}};
% \draw[->,line width=1mm]  (r1) -- (r2) node[above,midway] {\bl{$der\,a$}};
% \node (r3) [right=of r2] {\bl{$r_3$}};
% \draw[->,line width=1mm]  (r2) -- (r3) node[above,midway] {\bl{$der\,b$}};
% \node (r4) [right=of r3] {\bl{$r_4$}};
% \draw[->,line width=1mm]  (r3) -- (r4) node[above,midway] {\bl{$der\,c$}};
% \draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}};
% \node (v4) [below=of r4] {\bl{$v_4$}};
% \draw[->,line width=1mm]  (r4) -- (v4);
% \node (v3) [left=of v4] {\bl{$v_3$}};
% \draw[->,line width=1mm]  (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}};
% \node (v2) [left=of v3] {\bl{$v_2$}};
% \draw[->,line width=1mm]  (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}};
% \node (v1) [left=of v2] {\bl{$v_1$}};
% \draw[->,line width=1mm]  (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}};
% \draw[->,line width=0.5mm]  (r3) -- (v3);
% \draw[->,line width=0.5mm]  (r2) -- (v2);
% \draw[->,line width=0.5mm]  (r1) -- (v1);
% \draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}};
% \end{tikzpicture}
% %\end{textblock}

% \begin{center}
% \begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
%   \\[-10mm]
%   \bl{$inj\,(c)\,c\,Empty$} & \bl{$\dn$}  & \bl{$Char\,c$}\\
%   \bl{$inj\,(r_1 + r_2)\,c\,Left(v)$} & \bl{$\dn$}  & \bl{$Left(inj\,r_1\,c\,v)$}\\
%   \bl{$inj\,(r_1 + r_2)\,c\,Right(v)$} & \bl{$\dn$}  & \bl{$Right(inj\,r_2\,c\,v)$}\\
%   \bl{$inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$} & \bl{$\dn$}  & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\
%   \bl{$inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$} & \bl{$\dn$}  & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\
%   \bl{$inj\,(r_1 \cdot r_2)\,c\,Right(v)$} & \bl{$\dn$}  & \bl{$Seq(mkeps(r_1),inj\,r_2\,c\,v)$}\\
%   \bl{$inj\,(r^*)\,c\,Seq(v,vs)$} & \bl{$\dn$}  & \bl{$inj\,r\,c\,v\,::\,vs$}\\
% \end{tabular}
% \end{center}

% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Starting Symbol}

\bl{\begin{plstx}[margin=1cm]
  : \meta{S} ::= \meta{A}\cdot\meta{S}\cdot\meta{B} |
                 \meta{B}\cdot\meta{S}\cdot\meta{A} | \epsilon\\
  : \meta{A} ::= a | \epsilon\\
  : \meta{B} ::= b\\  
\end{plstx}}


TODO: Testcases for math expressions
\url{https://github.com/ArashPartow/math-parser-benchmark-project}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Hierarchy of Languages}

Recall that languages are sets of strings.

\begin{center}
\begin{tikzpicture}
[rect/.style={draw=black!50, top color=white,bottom color=black!20, rectangle, very thick, rounded corners}]

\draw (0,0) node [rect, text depth=39mm, text width=68mm] {all languages};
\draw (0,-0.4) node [rect, text depth=28.5mm, text width=64mm] {decidable languages};
\draw (0,-0.85) node [rect, text depth=17mm] {context sensitive languages};
\draw (0,-1.14) node [rect, text depth=9mm, text width=50mm] {context-free languages};
\draw (0,-1.4) node [rect] {regular languages};
\end{tikzpicture}

\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Parser Combinators}
  
Atomic parsers, for example

\begin{center}
\bl{$1::rest \;\Rightarrow\; \{(1, rest)\}$} 
\end{center}\bigskip

\begin{itemize}
\item you consume one or more tokens from the\\ 
  input (stream)
\item also works for characters and strings
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]

Alternative parser (code \bl{$p\;|\;q$})\bigskip

\begin{itemize}
\item apply \bl{$p$} and also \bl{$q$}; then combine 
  the outputs
\end{itemize}

\begin{center}
\large \bl{$p(\text{input}) \cup q(\text{input})$}
\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]

Sequence parser (code \bl{$p\sim q$})\bigskip

\begin{itemize}
\item apply first \bl{$p$} producing a set of pairs
\item then apply \bl{$q$} to the unparsed parts
\item then combine the results:\medskip 
\begin{center}
((output$_1$, output$_2$), unparsed part)
\end{center}
\end{itemize}

\begin{center}
\begin{tabular}{l}
\large \bl{$\{((o_1, o_2), u_2) \;|\;$}\\[2mm] 
\large\mbox{}\hspace{15mm} \bl{$(o_1, u_1) \in p(\text{input}) \wedge$}\\[2mm]
\large\mbox{}\hspace{15mm} \bl{$(o_2, u_2) \in q(u_1)\}$}
\end{tabular}
\end{center}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]

Function parser (code \bl{$p \Rightarrow f\;$})\bigskip

\begin{itemize}
\item apply \bl{$p$} producing a set of pairs
\item then apply the function \bl{$f$} to each first component
\end{itemize}

\begin{center}
\begin{tabular}{l}
\large \bl{$\{(f(o_1), u_1) \;|\; (o_1, u_1) \in p(\text{input})\}$}
\end{tabular}
\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Types of Parsers}

\begin{itemize}
\item {\bf Sequencing}: if \bl{$p$} returns results of type \bl{$T$}, and \bl{$q$} results of type \bl{$S$},
then \bl{$p \sim q$} returns results of type

\begin{center}
\bl{$T \times S$}
\end{center}\pause

\item {\bf Alternative}: if \bl{$p$} returns results of type \bl{$T$} then  \bl{$q$} \alert{must} also have results of type \bl{$T$},
and \bl{$p \;|\; q$} returns results of type

\begin{center}
\bl{$T$}
\end{center}\pause

\item {\bf Semantic Action}: if \bl{$p$} returns results of type \bl{$T$} and \bl{$f$} is a function from
\bl{$T$} to \bl{$S$}, then
\bl{$p \Rightarrow f$} returns results of type

\begin{center}
\bl{$S$}
\end{center}

\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Two Grammars}

Which languages are recognised by the following two grammars?

\bl{\begin{plstx}[margin=3cm]
: \meta{S} ::= \liningnums{1}\cdot\meta{S}\cdot \meta{S} | \epsilon\\
\end{plstx}}

\bl{\begin{plstx}[margin=3cm]
: \meta{U} ::= \liningnums{1}\cdot\meta{U} | \epsilon\\
\end{plstx}}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Ambiguous Grammars}

\begin{center}
\begin{tikzpicture}
\begin{axis}[xlabel={\pcode{1}s},ylabel={time in secs},
    enlargelimits=false,
    xtick={0,100,...,1000},
    xmax=1050,
    ymax=33,
    ytick={0,5,...,30},
    scaled ticks=false,
    axis lines=left,
    width=11cm,
    height=7cm, 
    legend entries={unambiguous,ambiguous},  
    legend pos=north east,
    legend cell align=left,
    x tick label style={font=\small,/pgf/number format/1000 sep={}}]
\addplot[blue,mark=*, mark options={fill=white}] 
  table {s-grammar1.data};
\only<2>{
  \addplot[red,mark=triangle*, mark options={fill=white}] 
  table {s-grammar2.data};}  
\end{axis}
\end{tikzpicture}
\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Arithmetic Expressions}

A grammar for arithmetic expressions and numbers:

\bl{\begin{plstx}[margin=1cm]
    : \meta{E} ::= \meta{E} \cdot + \cdot \meta{E}
    | \meta{E} \cdot * \cdot \meta{E}
    | ( \cdot \meta{E} \cdot )  | \meta{N}\\
    : \meta{N} ::= \meta{N} \cdot \meta{N} |
    0 | 1 | \ldots | 9\\
\end{plstx}}

Unfortunately it is left-recursive (and ambiguous).\medskip\\
A problem for \alert{recursive descent parsers} (e.g.~parser
combinators).  \bigskip\pause

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Numbers}

\bl{\begin{plstx}[margin=1cm]
    : \meta{N} ::= \meta{N} \cdot \meta{N} |
    0 | 1 | \ldots | 9\\
\end{plstx}}

A non-left-recursive, non-ambiguous grammar for numbers:

\bl{\begin{plstx}[margin=1cm]
    : \meta{N} ::= 0 \cdot \meta{N} | 1 \cdot \meta{N} | \ldots |
    0 | 1 | \ldots | 9\\
\end{plstx}}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Removing Left-Recursion}

The rule for numbers is directly left-recursive:

\begin{center}
\bl{\begin{tabular}{lcl}
$\meta{N}$ & $::=$ & $\meta{N} \cdot \meta{N} \;|\; 0 \;|\; 1\;\;\;\;(\ldots)$ 
\end{tabular}}
\end{center}

Translate

\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{lcl}
$\meta{N}$ & $::=$ & $\meta{N} \cdot \alpha$\\
 &  $\;|\;$ & $\beta$\\
 \\ 
\end{tabular}} 
& {\Large$\Rightarrow$} &
\bl{\begin{tabular}{lcl}
$\meta{N}$ & $::=$ & $\beta \cdot \meta{N}'$\\
$\meta{N}'$ & $::=$ & $\alpha \cdot \meta{N}'$\\
 &  $\;|\;$ & $\epsilon$ 
\end{tabular}}
\end{tabular}
\end{center}\pause

Which means in this case:

\begin{center}
\bl{\begin{tabular}{lcl}
$\meta{N}$ & $\rightarrow$ & $0 \cdot \meta{N}' \;|\; 1 \cdot \meta{N}'$\\
$\meta{N}'$ & $\rightarrow$ & $\meta{N} \cdot \meta{N}' \;|\; \epsilon$\\
\end{tabular}}
\end{center}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}[c]
%\frametitle{Operator Precedences}
%
%
%To disambiguate
%
%\begin{center}
%\bl{\begin{tabular}{lcl}
%$\meta{E}$ & $::=$ &  $\meta{E} \cdot + \cdot \meta{E} \;|\;\meta{E} \cdot * \cdot \meta{E} \;|\;( \cdot \meta{E} \cdot ) \;|\;\meta{N}$ \\
%\end{tabular}}
%\end{center}
%
%Decide on how many precedence levels, say\medskip\\
%highest for \bl{$()$}, medium for \bl{*}, lowest for \bl{+}
%
%\begin{center}
%\bl{\begin{tabular}{lcl}
%$\meta{E}_{low}$ & $::=$ & $\meta{E}_{med} \cdot + \cdot \meta{E}_{low} \;|\; \meta{E}_{med}$ \\
%$\meta{E}_{med}$ & $::=$ & $\meta{E}_{hi} \cdot * \cdot \meta{E}_{med} \;|\; \meta{E}_{hi}$\\
%$\meta{E}_{hi}$ & $::=$ &  $( \cdot \meta{E}_{low} \cdot ) \;|\;\meta{N}$ \\
%\end{tabular}}
%\end{center}\pause
%
%\small What happens with \bl{$1 + 3  + 4$}?
%\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Chomsky Normal Form}

All rules must be of the form

\begin{center}
\bl{$\meta{A} ::= a$}
\end{center}

or

\begin{center}
\bl{$\meta{A} ::= \meta{B}\cdot \meta{C}$}
\end{center}

No rule can contain \bl{$\epsilon$}.

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}$\epsilon$-Removal\end{tabular}}

\begin{enumerate}
\item If \bl{$A::= \alpha \cdot B \cdot \beta$} and \bl{$B ::= \epsilon$} are in the grammar,
then add \bl{$A::= \alpha \cdot \beta$} (iterate if necessary).
\item Throw out all \bl{$B ::= \epsilon$}.
\end{enumerate}

\small
\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'$\\
$N'$ & $::=$ & $N \cdot N'\;|\;\epsilon$\\
\\ 
\\
\\
\\
\\
\end{tabular}} &
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
\\
$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
$N'$ & $::=$ & $N \cdot N'\;|\;N\;|\;\epsilon$\\
\\
$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
$N'$ & $::=$ & $N \cdot N'\;|\;N$\\
\end{tabular}}
\end{tabular}
\end{center}

\pause\normalsize
\begin{center}
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
$N$ & $::=$ & $0 \cdot N\;|\; 1\cdot N\;|\;0\;|\;1$\\
\end{tabular}}

\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{CYK Algorithm}

If grammar is in Chomsky normalform \ldots

\begin{center}
\bl{\begin{tabular}{@ {}lcl@ {}}
$\meta{S}$ & $::=$ &  $\meta{N}\cdot \meta{P}$ \\
$\meta{P}$ & $::=$ &  $\meta{V}\cdot \meta{N}$ \\
$\meta{N}$ & $::=$ &  $\meta{N}\cdot \meta{N}$ \\
$\meta{N}$ & $::=$ &  $\texttt{students} \;|\; \texttt{Jeff} \;|\; \texttt{geometry} \;|\; \texttt{trains} $ \\
$\meta{V}$ & $::=$ &  $\texttt{trains}$ 
\end{tabular}}
\end{center}

\bl{\texttt{Jeff trains geometry students}}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{CYK Algorithm}


\begin{itemize}
\item fastest possible algorithm for recognition problem
\item runtime is \bl{$O(n^3)$}\bigskip
\item grammars need to be transformed into CNF
\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Goal of this Course}
\mbox{}\\[-26mm]\mbox{}

\begin{center}
  \begin{tikzpicture}[scale=1,
                      node/.style={
                      rectangle,rounded corners=3mm,
                      very thick,draw=black!50,
                      minimum height=18mm, minimum width=20mm,
                      top color=white,bottom color=black!20}]

  \node at (3.05, 1.8) {\Large\bf Write a Compiler};

  \node (0) at (-2.3,0) {}; 
  
  \node (A) at (0,0)  [node] {};
  \node [below right] at (A.north west) {lexer};

  \node (B) at (3,0)  [node] {};
  \node [below right=1mm] at (B.north west) 
    {\mbox{}\hspace{-1mm}parser};

  \node (C) at (6,0)  [node] {};
  \node [below right] at (C.north west) 
    {\mbox{}\hspace{-1mm}code gen};

  \node (1) at (8.4,0) {}; 

  \draw [->,line width=4mm] (0) -- (A); 
  \draw [->,line width=4mm] (A) -- (B); 
  \draw [->,line width=4mm] (B) -- (C); 
  \draw [->,line width=4mm] (C) -- (1); 
  \end{tikzpicture}
  \end{center}
  
We have a lexer and a parser\ldots
  
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]

\begin{center}
\bl{\begin{tabular}{@{}lcl@{}}
\meta{Stmt} & $::=$ &  $\texttt{skip}$\\
              & $|$ & \textit{Id}\;\texttt{:=}\;\meta{AExp}\\
              & $|$ & \texttt{if}\; \meta{BExp} \;\texttt{then}\; \meta{Block} \;\texttt{else}\; \meta{Block}\\
              & $|$ & \texttt{while}\; \meta{BExp} \;\texttt{do}\; \meta{Block}\\
              & $|$ & \texttt{read}\;\textit{Id}\\
              & $|$ & \texttt{write}\;\textit{Id}\\
              & $|$ & \texttt{write}\;\textit{String}\medskip\\
\meta{Stmts} & $::=$ &  \meta{Stmt} \;\texttt{;}\; \meta{Stmts}\\
              & $|$ & \meta{Stmt}\medskip\\
\meta{Block} & $::=$ &  \texttt{\{}\,\meta{Stmts}\,\texttt{\}}\\
                & $|$ & \meta{Stmt}\medskip\\
\meta{AExp} & $::=$ & \ldots\\
\meta{BExp} & $::=$ & \ldots\\
\end{tabular}}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]

??%%\mbox{\lstinputlisting[language=while]{../progs/fib.while}}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{An Interpreter}

\begin{center}
\bl{\begin{tabular}{l}
$\{$\\
\;\;$x := 5 \text{;}$\\
\;\;$y := x * 3\text{;}$\\
\;\;$y := x * 4\text{;}$\\
\;\;$x := u * 3$\\
$\}$
\end{tabular}}
\end{center}

\begin{itemize}
\item the interpreter has to record the value of \bl{$x$} before assigning a value to \bl{$y$}\pause
\item \bl{\text{eval}(stmt, env)}
\end{itemize}


\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{An Interpreter}

\begin{center}
\bl{\begin{tabular}{@{}lcl@{}}
$\text{eval}(n, E)$ & $\dn$ & $n$\\
$\text{eval}(x, E)$ & $\dn$ & $E(x)$ \;\;\;\textcolor{black}{lookup \bl{$x$} in \bl{$E$}}\\
$\text{eval}(a_1 + a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) + \text{eval}(a_2, E)$\\
$\text{eval}(a_1 - a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) - \text{eval}(a_2, E)$\\
$\text{eval}(a_1 * a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) * \text{eval}(a_2, E)$\bigskip\\
$\text{eval}(a_1 = a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) = \text{eval}(a_2, E)$\\
$\text{eval}(a_1\,!\!= a_2, E)$ & $\dn$ & $\neg(\text{eval}(a_1, E) = \text{eval}(a_2, E))$\\
$\text{eval}(a_1 < a_2, E)$ & $\dn$ & $\text{eval}(a_1, E) < \text{eval}(a_2, E)$\
\end{tabular}}
\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
\begin{frame}[c]
\frametitle{An Interpreter (2)}

\begin{center}
\bl{\begin{tabular}{@{}lcl@{}}
$\text{eval}(\text{skip}, E)$ & $\dn$ & $E$\\
$\text{eval}(x:=a, E)$ & $\dn$ & \bl{$E(x \mapsto \text{eval}(a, E))$}\\
\multicolumn{3}{@{}l@{}}{$\text{eval}(\text{if}\;b\;\text{then}\;cs_1\;\text{else}\;cs_2 , E) \dn$}\\
\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{if}\;\text{eval}(b,E)\;\text{then}\;
\text{eval}(cs_1,E)$}\\
\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\phantom{\text{if}\;\text{eval}(b,E)\;}\text{else}\;\text{eval}(cs_2,E)$}\\
\multicolumn{3}{@{}l@{}}{$\text{eval}(\text{while}\;b\;\text{do}\;cs, E) \dn$}\\
\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{if}\;\text{eval}(b,E)$}\\
\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{then}\;
\text{eval}(\text{while}\;b\;\text{do}\;cs, \text{eval}(cs,E))$}\\
\multicolumn{3}{@{}l@{}}{\hspace{2cm}$\text{else}\; E$}\\
$\text{eval}(\text{write}\; x, E)$ & $\dn$ & $\{\;\text{println}(E(x))\; ;\;E\;\}$\\
\end{tabular}}
\end{center}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Test Program\end{tabular}}

\mbox{}\\[-18mm]\mbox{}

??
%{\lstset{language=While}%%\fontsize{10}{12}\selectfont
%\texttt{\lstinputlisting{../progs/loops.while}}}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Interpreted Code\end{tabular}}

\begin{center}
\begin{tikzpicture}
\begin{axis}[axis x line=bottom, axis y line=left, xlabel=n, ylabel=secs, legend style=small]
\addplot+[smooth] file {interpreted.data};
\end{axis}
\end{tikzpicture}
\end{center}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Java Virtual Machine}

\begin{itemize}
\item introduced in 1995
\item is a stack-based VM (like Postscript, CLR of .Net)
\item contains a JIT compiler\\
\begin{itemize}
\item From the Cradle to the Holy Graal - the JDK Story
\item \url{https://www.youtube.com/watch?v=h419kfbLhUI}
\end{itemize}
\item is garbage collected $\Rightarrow$ no buffer overflows
\item some languages compile to the JVM: Scala, Clojure\ldots
\end{itemize}

\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{LLVM}

\begin{itemize}
\item LLVM started by academics in 2000 (University of Illinois in 
Urbana-Champaign)
\item suite of compiler tools
\item SSA-based intermediate language
\item no need to allocate registers
\item source languages: C, C++, Rust, Go, Swift
\item target CPUs: x86, ARM, PowerPC, \ldots
\end{itemize}  
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}[c]
%  \frametitle{Coursework: MkEps}
%
%\begin{center}
%\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
%  \bl{$mkeps([c_1 c_2 \ldots c_n])$}  & \bl{$\dn$} & $\bl{undefined}$\\
%  \bl{$mkeps(r^*)$}                   & \bl{$\dn$} & $\bl{Stars\,[]}$\\
%  \bl{$mkeps(r^{\{n\}})$}              & \bl{$\dn$} & $\bl{Stars\,(mkeps(r))^n}$\\
%  \bl{$mkeps(r^{\{n..\}})$}            & \bl{$\dn$} & $\bl{Stars\,(mkeps(r))^n}$\\
%  \bl{$mkeps(r^{\{..n\}})$}            & \bl{$\dn$} & $\bl{Stars\,[]}$\\
%  \bl{$mkeps(r^{\{n..m\}})$}           & \bl{$\dn$} & $\bl{Stars\,(mkeps(r))^n}$\medskip\\
%  
%  \bl{$mkeps(r^+)$}                   & \bl{$\dn$} & \bl{$mkeps(r^{\{1..\}})$}\\
%  \bl{$mkeps(r^?)$}                   & \bl{$\dn$} & \bl{$mkeps(r^{\{..1\}})$}\\
%\end{tabular}
%\end{center}
%
%\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}[c]
%  \frametitle{Coursework: Inj}
%
%\begin{center}
%\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
%  \bl{$inj([c_1 c_2 \ldots c_n])\,c\,Empty$}  & \bl{$\dn$} & $\bl{Chr\,c}$\\
%  \bl{$inj(r^*)\,c\;(Seq\,v\,(Stars\,vs))$}                   & \bl{$\dn$} & $\bl{Stars\,(inj\,r\,c\,v::vs)}$\\
%  \bl{$inj(r^{\{n\}})\,c\;(Seq\,v\,(Stars\,vs))$}              & \bl{$\dn$} & $\bl{Stars\,(inj\,r\,c\,v::vs)}$\\
%  \bl{$inj(r^{\{n..\}})\,c\;(Seq\,v\,(Stars\,vs))$}            & \bl{$\dn$} & $\bl{Stars\,(inj\,r\,c\,v::vs)}$\\
%  \bl{$inj(r^{\{..n\}})\,c\;(Seq\,v\,(Stars\,vs))$}            & \bl{$\dn$} & $\bl{Stars\,(inj\,r\,c\,v::vs)}$\\
%  \bl{$inj(r^{\{n..m\}})\,c\;(Seq\,v\,(Stars\,vs))$}           & \bl{$\dn$} & $\bl{Stars\,(inj\,r\,c\,v::vs)}$\medskip\\
%  
%  \bl{$inj(r^+)\,c\,v$}                   & \bl{$\dn$} & \bl{$inj(r^{\{1..\}})\,c\,v$}\\
%  \bl{$inj(r^?)\,c\,v$}                   & \bl{$\dn$} & \bl{$inj(r^{\{..1\}})\,c\,v$}\\
%\end{tabular}
%\end{center}
%
%\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%

\end{document}

%%% Local Variables:  
%%% mode: latex
%%% TeX-master: t
%%% End: