// Simple matcher for basic regular expressions
abstract class Rexp
case object ZERO extends Rexp // matches nothing
case object ONE extends Rexp // matches the empty string
case class CHAR(c: Char) extends Rexp // matches a character c
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
case class STAR(r: Rexp) extends Rexp // star
// nullable function: tests whether a regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// main matcher function
def matches(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r))
//examples from the homework
val r = STAR(ALT(SEQ(CHAR('a'), CHAR('b')), CHAR('b')))
der('a', r)
der('b', r)
der('c', r)
//optional regular expression (one or zero times)
def OPT(r: Rexp) = ALT(r, ONE)
//n-times regular expression (explicitly expanded)
def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => ONE
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))
}
// Test Cases
// the evil regular expression a?{n} a{n}
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
// the evil regular expression (a*)*b
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
//for measuring time
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
//test: (a?{n}) (a{n})
for (i <- 1 to 20) {
println(i + ": " + "%.5f".format(time_needed(2, matches(EVIL1(i), "a" * i))))
}
for (i <- 1 to 20) {
println(i + ": " + "%.5f".format(time_needed(2, matches(EVIL1(i), "a" * i))))
}
//test: (a*)* b
for (i <- 1 to 20) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL2, "a" * i))))
}
for (i <- 1 to 20) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL2, "a" * i))))
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
}
// the expicit expansion in EVIL1(n) increases
// drastically its size
size(EVIL1(1)) // 5
size(EVIL1(3)) // 17
size(EVIL1(5)) // 29
size(EVIL1(7)) // 41
// given a regular expression and building successive
// derivatives might result into bigger and bigger
// regular expressions...here is an example for this:
val BIG_aux = STAR(ALT(CHAR('a'), CHAR('b')))
val BIG = SEQ(BIG_aux, SEQ(CHAR('a'),SEQ(CHAR('b'), BIG_aux)))
size(ders("".toList, BIG)) // 13
size(ders("ab".toList, BIG)) // 51
size(ders("abab".toList, BIG)) // 112
size(ders("ababab".toList, BIG)) // 191
size(ders("abababab".toList, BIG)) // 288
size(ders("ababababab".toList, BIG)) // 403
size(ders("abababababab".toList, BIG)) // 536
size(ders(("ab" * 200).toList, BIG)) // 366808