// A version with simplification of derivatives;
// this keeps the regular expressions small, which
// is good for the run-time
//
// call the test cases with X = {1,2}
//
// amm re3.sc testX
//
// or
//
// amm re3.sc all
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class NTIMES(r: Rexp, n: Int) extends Rexp
// the nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case NTIMES(r, i) => if (i == 0) true else nullable(r)
}
// the derivative of a regular expression w.r.t. a character
def der(c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
case NTIMES(r, i) =>
if (i == 0) ZERO else SEQ(der(c, r), NTIMES(r, i - 1))
}
def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => (simp(r1), simp(r2)) match {
case (ZERO, r2s) => r2s
case (r1s, ZERO) => r1s
case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
}
case SEQ(r1, r2) => (simp(r1), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, ONE) => r1s
case (r1s, r2s) => SEQ(r1s, r2s)
}
case r => r
}
// the derivative w.r.t. a string (iterates der)
def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))
}
// the main matcher function
def matcher(r: Rexp, s: String) : Boolean =
nullable(ders(s.toList, r))
// one or zero
def OPT(r: Rexp) = ALT(r, ONE)
// Test Cases
// evil regular expressions: (a?){n} a{n} and (a*)* b
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
@arg(doc = "Test (a?{n}) (a{n})")
@main
def test1() = {
println("Test (a?{n}) (a{n})")
for (i <- 0 to 9000 by 1000) {
println(f"$i: ${time_needed(3, matcher(EVIL1(i), "a" * i))}%.5f")
}
}
@arg(doc = "Test (a*)* b")
@main
def test2() = {
println("Test (a*)* b")
for (i <- 0 to 6000000 by 500000) {
println(f"$i: ${time_needed(3, matcher(EVIL2, "a" * i))}%.5f")
}
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case NTIMES(r, _) => 1 + size(r)
}
// now the size of the derivatives grows
// much, much slower
size(ders("".toList, EVIL2)) // 5
size(ders("a".toList, EVIL2)) // 8
size(ders("aa".toList, EVIL2)) // 8
size(ders("aaa".toList, EVIL2)) // 8
size(ders("aaaa".toList, EVIL2)) // 8
size(ders("aaaaa".toList, EVIL2)) // 8
@arg(doc = "All tests.")
@main
def all() = { test1(); test2() }
// PS:
//
// If you want to dig deeper into the topic, you can have
// a look at these examples which still explode. They
// need an even more aggressive simplification.
// test: (a + aa)*
val EVIL3 = STAR(ALT(CHAR('a'), SEQ(CHAR('a'), CHAR('a'))))
@arg(doc = "Test EVIL3")
@main
def test3() = {
println("Test (a + aa)*")
for (i <- 0 to 30 by 5) {
println(f"$i: ${time_needed(1, matcher(EVIL3, "a" * i))}%.5f")
}
}
// test: (1 + a + aa)*
val EVIL4 = STAR(ALT(ONE, ALT(CHAR('a'), SEQ(CHAR('a'), CHAR('a')))))
@arg(doc = "Test EVIL4")
@main
def test4() = {
println("Test (1 + a + aa)*")
for (i <- 0 to 30 by 5) {
println(f"$i: ${time_needed(1, matcher(EVIL4, "a" * i))}%.5f")
}
}
@arg(doc = "Tests that show not all is hunky-dory, but a solution leads too far afield.")
@main
def fail() = { test3(); test4() }
// runs with amm2 and amm3
def pp(r: Rexp): String = r match {
case SEQ(CHAR(a1), SEQ(r1, r2)) => s"${a1}${pp(r1)}${pp(r2)}"
case SEQ(ONE, SEQ(r1, r2)) => s"1${pp(r1)}${pp(r2)}"
case SEQ(ZERO, SEQ(r1, r2)) => s"0${pp(r1)}${pp(r2)}"
case SEQ(CHAR(a1), CHAR(a2)) => s"${a1}${a2}"
case SEQ(ONE, CHAR(a2)) => s"1${a2}"
case SEQ(ZERO, CHAR(a2)) => s"0${a2}"
case ZERO => "0"
case ONE => "1"
case CHAR(a) => a.toString
case ALT(r1, r2) => s"(${pp(r1)} + ${pp(r2)})"
case SEQ(r1, r2) => s"(${pp(r1)} o ${pp(r2)})"
case STAR(r1) => s"(${pp(r1)})*"
}
val REG = STAR(ALT(CHAR('a'), SEQ(CHAR('a'), CHAR('a'))))
print(pp(ders("".toList, REG)))
print(pp(ders("a".toList, REG)))
print(pp(ders("aa".toList, REG)))
print(pp(ders("aaa".toList, REG)))
size(ders("".toList, REG)) // 6
size(ders("a".toList, REG)) // 12
size(ders("aa".toList, REG)) // 27
size(ders("aaa".toList, REG)) // 55
size(ders("aaaa".toList, REG)) // 8
size(ders("aaaaa".toList, REG)) // 169
size(ders("aaaaaa".toList, REG)) // 283
size(ders(("a" * 7).toList, REG)) // 468
size(ders(("a" * 8).toList, REG)) // 767
size(ders(("a" * 9).toList, REG)) // 1251
size(ders(("a" * 10).toList, REG))// 2034
size(ders(("a" * 11).toList, REG))// 3301
for (i <- (0 to 40)) {
println(s"$i:" + size(ders(("a" * i).toList, REG)))
}