// Parser Combinators: Simple Version//====================================//// Call with//// amm comb1.sc// Note, in the lectures I did not show the type bound// using is: I => Seq[_], which means that the input // type 'I' needs to be a sequence. abstract class Parser[I, T](using is: I => Seq[_]) { def parse(in: I): Set[(T, I)] def parse_all(in: I) : Set[T] = for ((hd, tl) <- parse(in); if is(tl).isEmpty) yield hd}// parser combinators// alternative parserclass AltParser[I, T](p: => Parser[I, T], q: => Parser[I, T])(using I => Seq[_]) extends Parser[I, T] { def parse(in: I) = p.parse(in) ++ q.parse(in) }// sequence parserclass SeqParser[I, T, S](p: => Parser[I, T], q: => Parser[I, S])(using I => Seq[_]) extends Parser[I, (T, S)] { def parse(in: I) = for ((hd1, tl1) <- p.parse(in); (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2)}// map parserclass MapParser[I, T, S](p: => Parser[I, T], f: T => S)(using I => Seq[_]) extends Parser[I, S] { def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl)}// an example of an atomic parser for characterscase class CharParser(c: Char) extends Parser[String, Char] { def parse(in: String) = if (in != "" && in.head == c) Set((c, in.tail)) else Set()}CharParser('a').parse("abc")// an atomic parser for parsing strings according to a regeximport scala.util.matching.Regexcase class RegexParser(reg: Regex) extends Parser[String, String] { def parse(in: String) = reg.findPrefixMatchOf(in) match { case None => Set() case Some(m) => Set((m.matched, m.after.toString)) }}// atomic parsers for numbers and "verbatim" strings val NumParser = RegexParser("[0-9]+".r)def StrParser(s: String) = RegexParser(Regex.quote(s).r)NumParser.parse("a123a123bc") StrParser("else").parse("elsethen")// NumParserInt transforms a "string integer" into a propper Int// (needs "new" because MapParser is not a case class)val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt)NumParserInt.parse("123abc")// the following string interpolation allows us to write // StrParser(_some_string_) more conveniently as //// p"<_some_string_>" extension (sc: StringContext) def p(args: Any*) = StrParser(sc.s(args:_*))(p"else").parse("elsethen") // more convenient syntax for parser combinatorsextension [I, T](p: Parser[I, T])(using I => Seq[_]) { def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) def mapp[S](f: => T => S) = new MapParser[I, T, S](p, f)}def toU(s: String) = s.map(_.toUpper)(p"ELSE").mapp(toU(_)).parse("ELSEifthen") // these implicits allow us to use an infix notation for// sequences and alternatives; we also can write the usual// map for a MapParser// with this NumParserInt can now be written more conveniently// as:val NumParserInt2 = NumParser.map(_.toInt)// A parser for palindromes (just returns them as string)lazy val Pal : Parser[String, String] = { (p"a" ~ Pal ~ p"a").mapp{ case ((x, y), z) => s"$x$y$z" } || (p"b" ~ Pal ~ p"b").mapp{ case ((x, y), z) => s"$x$y$z" } || p"a" || p"b" || p""} // examplesPal.parse_all("abaaaba")Pal.parse("abaaaba")println("Palindrome: " + Pal.parse_all("abaaaba"))// A parser for wellnested parentheses //// P ::= ( P ) P | epsilon//// (transforms '(' -> '{' , ')' -> '}' )lazy val P : Parser[String, String] = { (p"(" ~ P ~ p")" ~ P).mapp{ case (((_, x), _), y) => "{" + x + "}" + y } || p""} println(P.parse_all("(((()()))())"))println(P.parse_all("(((()()))()))"))println(P.parse_all(")("))println(P.parse_all("()"))// A parser for arithmetic expressions (Terms and Factors)lazy val E: Parser[String, Int] = { (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } || (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T }lazy val T: Parser[String, Int] = { (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F }lazy val F: Parser[String, Int] = { (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt }println(E.parse_all("1+3+4"))println(E.parse("1+3+4"))println(E.parse_all("4*2+3"))println(E.parse_all("4*(2+3)"))println(E.parse_all("(4)*((2+3))"))println(E.parse_all("4/2+3"))println(E.parse("1 + 2 * 3"))println(E.parse_all("(1+2)+3"))println(E.parse_all("1+2+3"))// with parser combinators (and other parsing algorithms)// no left-recursion is allowed, otherwise the will looplazy val EL: Parser[String, Int] = ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} || (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} || (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} || NumParserInt)// this will run forever://println(EL.parse_all("1+2+3"))// non-ambiguous vs ambiguous grammars// ambiguouslazy val S : Parser[String, String] = (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p""//println(time(S.parse("1" * 10)))//println(time(S.parse_all("1" * 10)))// non-ambiguouslazy val U : Parser[String, String] = (p"1" ~ U).map{ case (x, y) => x + y } || p""//println(time(U.parse("1" * 10)))//println(time(U.parse_all("1" * 10)))println(U.parse("1" * 25))U.parse("11")U.parse("11111")U.parse("11011")U.parse_all("1" * 100)U.parse_all("1" * 100 + "0")// you can see the difference in second example//S.parse_all("1" * 100) // succeeds//S.parse_all("1" * 100 + "0") // fails// A variant which counts how many 1s are parsedlazy val UCount : Parser[String, Int] = (p"1" ~ UCount).map{ case (_, y) => y + 1 } || p"".map{ _ => 0 }println(UCount.parse("11111"))println(UCount.parse_all("11111"))// Two single character parserslazy val One : Parser[String, String] = p"a"lazy val Two : Parser[String, String] = p"b"One.parse("a")One.parse("aaa")// note how the pairs nest to the left with sequence parsers(One ~ One).parse("aaa")(One ~ One ~ One).parse("aaa")(One ~ One ~ One ~ One).parse("aaaa")(One || Two).parse("aaa")// a problem with the arithmetic expression parser: it // gets very slow with deeply nested parenthesesprintln("Runtime problem")println(E.parse("1"))println(E.parse("(1)"))println(E.parse("((1))"))println(E.parse("(((1)))"))println(E.parse("((((1))))"))//println(E.parse("((((((1))))))"))//println(E.parse("(((((((1)))))))"))//println(E.parse("((((((((1))))))))"))// faster because of mergelazy val E2: Parser[String, Int] = { (T2 ~ (p"+" || p"-") ~ E2).mapp[Int]{ case ((x, y), z) => if (y == "+") x + z else x - z} || T2 }lazy val T2: Parser[String, Int] = { (F2 ~ p"*" ~ T2).mapp[Int]{ case ((x, _), z) => x * z } || F2 }lazy val F2: Parser[String, Int] = { (p"(" ~ E2 ~ p")").mapp[Int]{ case ((_, y), _) => y } || NumParserInt }println("Runtime problem")println(E2.parse("1"))println(E2.parse("(1)"))println(E2.parse("((1))"))println(E2.parse("(((1)))"))println(E2.parse("((((1))))"))//println(E2.parse("((((((1))))))"))//println(E2.parse("(((((((1)))))))"))//println(E2.parse("((((((((1))))))))"))