// A version with simplification of derivatives;+ −
// this keeps the regular expressions small, which+ −
// is good for the run-time+ −
+ −
+ −
abstract class Rexp+ −
case object ZERO extends Rexp+ −
case object ONE extends Rexp+ −
case class CHAR(c: Char) extends Rexp+ −
case class ALT(r1: Rexp, r2: Rexp) extends Rexp + −
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp + −
case class STAR(r: Rexp) extends Rexp + −
case class NTIMES(r: Rexp, n: Int) extends Rexp + −
+ −
+ −
+ −
// the nullable function: tests whether the regular + −
// expression can recognise the empty string+ −
def nullable (r: Rexp) : Boolean = r match {+ −
case ZERO => false+ −
case ONE => true+ −
case CHAR(_) => false+ −
case ALT(r1, r2) => nullable(r1) || nullable(r2)+ −
case SEQ(r1, r2) => nullable(r1) && nullable(r2)+ −
case STAR(_) => true+ −
case NTIMES(r, i) => if (i == 0) true else nullable(r)+ −
}+ −
+ −
// the derivative of a regular expression w.r.t. a character+ −
def der (c: Char, r: Rexp) : Rexp = r match {+ −
case ZERO => ZERO+ −
case ONE => ZERO+ −
case CHAR(d) => if (c == d) ONE else ZERO+ −
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))+ −
case SEQ(r1, r2) => + −
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))+ −
else SEQ(der(c, r1), r2)+ −
case STAR(r1) => SEQ(der(c, r1), STAR(r1))+ −
case NTIMES(r, i) => + −
if (i == 0) ZERO else SEQ(der(c, r), NTIMES(r, i - 1))+ −
}+ −
+ −
def simp(r: Rexp) : Rexp = r match {+ −
case ALT(r1, r2) => (simp(r1), simp(r2)) match {+ −
case (ZERO, r2s) => r2s+ −
case (r1s, ZERO) => r1s+ −
case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)+ −
}+ −
case SEQ(r1, r2) => (simp(r1), simp(r2)) match {+ −
case (ZERO, _) => ZERO+ −
case (_, ZERO) => ZERO+ −
case (ONE, r2s) => r2s+ −
case (r1s, ONE) => r1s+ −
case (r1s, r2s) => SEQ(r1s, r2s)+ −
}+ −
case r => r+ −
}+ −
+ −
+ −
// the derivative w.r.t. a string (iterates der)+ −
def ders(s: List[Char], r: Rexp) : Rexp = s match {+ −
case Nil => r+ −
case c::s => ders(s, simp(der(c, r)))+ −
}+ −
+ −
+ −
// the main matcher function+ −
def matcher(r: Rexp, s: String) : Boolean = + −
nullable(ders(s.toList, r))+ −
+ −
+ −
// one or zero+ −
def OPT(r: Rexp) = ALT(r, ONE)+ −
+ −
+ −
// Test Cases+ −
+ −
// evil regular expressions: (a?){n} a{n} and (a*)* b+ −
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))+ −
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))+ −
+ −
+ −
def time_needed[T](i: Int, code: => T) = {+ −
val start = System.nanoTime()+ −
for (j <- 1 to i) code+ −
val end = System.nanoTime()+ −
(end - start)/(i * 1.0e9)+ −
}+ −
+ −
+ −
//test: (a?{n}) (a{n})+ −
for (i <- 0 to 8000 by 1000) {+ −
println(f"$i: ${time_needed(3, matcher(EVIL1(i), "a" * i))}%.5f")+ −
}+ −
+ −
//test: (a*)* b+ −
for (i <- 0 to 6000000 by 500000) {+ −
println(f"$i: ${time_needed(3, matcher(EVIL2, "a" * i))}%.5f")+ −
}+ −
+ −
+ −
// size of a regular expressions - for testing purposes + −
def size(r: Rexp) : Int = r match {+ −
case ZERO => 1+ −
case ONE => 1+ −
case CHAR(_) => 1+ −
case ALT(r1, r2) => 1 + size(r1) + size(r2)+ −
case SEQ(r1, r2) => 1 + size(r1) + size(r2)+ −
case STAR(r) => 1 + size(r)+ −
case NTIMES(r, _) => 1 + size(r)+ −
}+ −
+ −
+ −
// now the size of the derivatives grows + −
// much, much slower+ −
+ −
size(ders("".toList, EVIL2)) // 5+ −
size(ders("a".toList, EVIL2)) // 8+ −
size(ders("aa".toList, EVIL2)) // 8+ −
size(ders("aaa".toList, EVIL2)) // 8+ −
size(ders("aaaa".toList, EVIL2)) // 8+ −
size(ders("aaaaa".toList, EVIL2)) // 8+ −
+ −
+ −
+ −
+ −
+ −