\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{beamerthemeplaincu}
\usepackage[absolute,overlay]{textpos}
\usepackage{ifthen}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{calc}
\usepackage{ulem}
\usepackage{courier}
\usepackage{listings}
\renewcommand{\uline}[1]{#1}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{shapes}
\usetikzlibrary{shadows}
\usetikzlibrary{positioning}
\usetikzlibrary{calc}
\usetikzlibrary{fit}
\usetikzlibrary{plotmarks}
\usetikzlibrary{backgrounds}
\usepackage{graphicx}
\usepackage{../langs}
\usepackage{../data}
\makeatletter
\lst@CCPutMacro\lst@ProcessOther {"2D}{\lst@ttfamily{-{}}{-{}}}
\@empty\z@\@empty
\makeatother
\renewcommand{\slidecaption}{AFL 04, King's College London, 16.~October 2013}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Automata and \\[-2mm]
\LARGE Formal Languages (4)\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Office: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{Regexps and Automata}
\begin{center}
\begin{tikzpicture}
\node (rexp) {\bl{\bf Regexps}};
\node (nfa) [right=of rexp] {\bl{\bf NFAs}};
\node (dfa) [right=of nfa] {\bl{\bf DFAs}};
\onslide<3->{\node (mdfa) [right=of dfa] {\bl{\bf \begin{tabular}{c}minimal\\ DFAs\end{tabular}}};}
\path[->, red, line width=2mm] (rexp) edge node [above=4mm, black] {\begin{tabular}{c@{\hspace{9mm}}}Thompson's\\[-1mm] construction\end{tabular}} (nfa);
\path[->, red, line width=2mm] (nfa) edge node [above=4mm, black] {\begin{tabular}{c}subset\\[-1mm] construction\end{tabular}}(dfa);
\onslide<3->{\path[->, red, line width=2mm] (dfa) edge node [below=9mm, black] {minimisation} (mdfa);}
\onslide<2->{\path[->, red, line width=2mm] (dfa) edge [bend left=45] (rexp);}
\end{tikzpicture}\\
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}DFAs\end{tabular}}
A deterministic finite automaton consists of:
\begin{itemize}
\item a finite set of states, \bl{$Q$}
\item one of these states is the start state, \bl{$q_0$}
\item there is transition function, \bl{$\delta$}, and
\item some states are accepting states, \bl{$F$}
\medskip
\end{itemize}
\begin{center}
\bl{$A(Q, q_0, \delta, F)$}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}State Nodes\end{tabular}}
\hspace{5mm}\mbox{{\lstset{language=Scala}\consolas\fontsize{9}{10}\selectfont
\lstinputlisting{../progs/appA.scala}}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}DFAs\;\;\;\end{tabular}}
\mbox{}\\[7mm]
\mbox{{\lstset{language=Scala}\consolas\fontsize{9}{10}\selectfont
\lstinputlisting{../progs/appB.scala}}}
\only<2->{
\begin{textblock}{9}(7.5,0.5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
{\normalsize\color{darkgray}
\begin{minipage}{6cm}
\begin{tabular}{l}
\bl{$\hat{\delta}(q, \texttt{""}) \dn q$}\\
\bl{$\hat{\delta}(q, c::s) \dn \hat{\delta}(\delta(q, c), s)$}\\[4mm]
\bl{$\hat{\delta}(q_0, s) \in F$}
\end{tabular}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\mbox{}\hspace{-10mm}
\begin{tikzpicture}[scale=0.6,>=stealth',very thick,auto,
every state/.style={minimum size=0pt,inner sep=2pt,draw=blue!50,very thick,fill=blue!20},]
\node[state,initial] (q_0) {$q_0$};
\node[state] (q_1) [right=of q_0] {$q_1$};
\node[state] (q_2) [below right=of q_0] {$q_2$};
\node[state] (q_3) [right=of q_2] {$q_3$};
\node[state, accepting] (q_4) [right=of q_1] {$q_4$};
\path[->] (q_0) edge node [above] {\alert{$a$}} (q_1);
\path[->] (q_1) edge node [above] {\alert{$a$}} (q_4);
\path[->] (q_4) edge [loop right] node {\alert{$a, b$}} ();
\path[->] (q_3) edge node [right] {\alert{$a$}} (q_4);
\path[->] (q_2) edge node [above] {\alert{$a$}} (q_3);
\path[->] (q_1) edge node [right] {\alert{$b$}} (q_2);
\path[->] (q_0) edge node [above] {\alert{$b$}} (q_2);
\path[->] (q_2) edge [loop left] node {\alert{$b$}} ();
\path[->] (q_3) edge [bend left=95, looseness=1.3] node [below] {\alert{$b$}} (q_0);
\end{tikzpicture}
\only<1->{
\begin{textblock}{9}(7.4,3.5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
{\normalsize\color{darkgray}
\begin{minipage}{6.6cm}
\hspace{5mm}\mbox{{\lstset{language=Scala}\consolas\fontsize{8}{10}\selectfont
\lstinputlisting{../progs/appC.scala}}}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}NFAs\end{tabular}}
A non-deterministic finite automaton \bl{$A(Q, q_0, \delta, F)$} consists of:\medskip
\begin{itemize}
\item a finite set of states, \bl{$Q$}
\item one of these states is the start state, \bl{$q_0$}
\item some states are accepting states, \bl{$F$},
\item there is transition \alert{relation}, \bl{$\delta$}, and
\item there are \alert{silent} transitions\medskip
\end{itemize}
\begin{center}
\begin{tabular}{c}
\bl{$(q_1, a) \rightarrow q_2$}\\
\bl{$(q_1, a) \rightarrow q_3$}\\
\end{tabular}
\hspace{10mm}
\begin{tabular}{c}
\bl{$(q_1, \epsilon) \rightarrow q_2$}\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\hspace{5mm}\mbox{{\lstset{language=Scala}\consolas\fontsize{9}{10}\selectfont
\lstinputlisting{../progs/appD.scala}}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\mbox{}\hspace{-10mm}
\begin{tikzpicture}[scale=0.6,>=stealth',very thick,auto,
every state/.style={minimum size=0pt,inner sep=2pt,draw=blue!50,very thick,fill=blue!20},]
\node[state,initial] (q_0) {$q_0$};
\node[state] (q_1) [above=of q_0] {$q_1$};
\node[state, accepting] (q_2) [below=of q_0] {$q_2$};
\path[->] (q_0) edge node [left] {\alert{$\epsilon$}} (q_1);
\path[->] (q_0) edge node [left] {\alert{$\epsilon$}} (q_2);
\path[->] (q_0) edge [loop right] node {\alert{$a$}} ();
\path[->] (q_1) edge [loop above] node {\alert{$a$}} ();
\path[->] (q_2) edge [loop below] node {\alert{$b$}} ();
\end{tikzpicture}
\only<1->{
\begin{textblock}{9}(6,1.5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm]
{\normalsize\color{darkgray}
\begin{minipage}{7cm}
\hspace{5mm}\mbox{{\lstset{language=Scala}\consolas\fontsize{8}{10}\selectfont
\lstinputlisting{../progs/appE.scala}}}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{Rexp to NFA}
Thompson's construction of a NFA from a regular expression:
\begin{center}
\begin{tabular}[t]{l@{\hspace{10mm}}l}
\raisebox{1mm}{\bl{$\varnothing$}} &
\begin{tikzpicture}[scale=0.7,>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\node[state, initial] (q_0) {$\mbox{}$};
\end{tikzpicture}\\\\
\raisebox{1mm}{\bl{$\epsilon$}} &
\begin{tikzpicture}[scale=0.7,>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\node[state, initial, accepting] (q_0) {$\mbox{}$};
\end{tikzpicture}\\\\
\raisebox{2mm}{\bl{$c$}} &
\begin{tikzpicture}[scale=0.7,>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\node[state, initial] (q_0) {$\mbox{}$};
\node[state, accepting] (q_1) [right=of q_0] {$\mbox{}$};
\path[->] (q_0) edge node [below] {\alert{$c$}} (q_1);
\end{tikzpicture}\\\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{Case $r_1\cdot r_2$}
\mbox{}\bigskip
\onslide<1>{By recursion we are given two automata:\bigskip}
{\centering\begin{tikzpicture}[node distance=3mm,
>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\node[state, initial] (q_0) {$\mbox{}$};
\node (r_1) [right=of q_0] {$\ldots$};
\only<1>{
\node[state, accepting] (t_1) [right=of r_1] {$\mbox{}$};
\node[state, accepting] (t_2) [above=of t_1] {$\mbox{}$};
\node[state, accepting] (t_3) [below=of t_1] {$\mbox{}$};}
\only<2>{
\node[state] (t_1) [right=of r_1] {$\mbox{}$};
\node[state] (t_2) [above=of t_1] {$\mbox{}$};
\node[state] (t_3) [below=of t_1] {$\mbox{}$};}
\only<1>{\node[state, initial] (a_0) [right=2.5cm of t_1] {$\mbox{}$};}
\only<2>{\node[state] (a_0) [right=2.5cm of t_1] {$\mbox{}$};}
\node (b_1) [right=of a_0] {$\ldots$};
\node[state, accepting] (c_1) [right=of b_1] {$\mbox{}$};
\node[state, accepting] (c_2) [above=of c_1] {$\mbox{}$};
\node[state, accepting] (c_3) [below=of c_1] {$\mbox{}$};
\only<2>{
\path[->] (t_1) edge node [above, pos=0.3] {\alert{$\epsilon$}} (a_0);
\path[->] (t_2) edge node [above] {\alert{$\epsilon$}} (a_0);
\path[->] (t_3) edge node [below] {\alert{$\epsilon$}} (a_0);
}
\begin{pgfonlayer}{background}
\only<1>{\node (1) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (q_0) (r_1) (t_1) (t_2) (t_3)] {};}
\only<1>{\node (2) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (a_0) (b_1) (c_1) (c_2) (c_3)] {};}
\only<2>{\node (3) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (q_0) (c_1) (c_2) (c_3)] {};}
\only<1>{\node [yshift=2mm] at (1.north) {\bl{$r_1$}};}
\only<1>{\node [yshift=2mm] at (2.north) {\bl{$r_2$}};}
\only<2>{\node [yshift=2mm] at (3.north) {\bl{$r_1\cdot r_2$}};}
\end{pgfonlayer}
\end{tikzpicture}}\bigskip\bigskip
\small
We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them
via $\epsilon$-transitions to the starting state of the second automaton.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{Case $r_1+ r_2$}
\onslide<1>{By recursion we are given two automata:\smallskip}
\hspace{2cm}\begin{tikzpicture}[node distance=3mm,
>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\onslide<1>{\node at (0,0) (1) {$\mbox{}$};}
\onslide<2>{\node at (0,0) [state, initial] (1) {$\mbox{}$};}
\only<1>{
\node[state, initial] (2) [above right=16mm of 1] {$\mbox{}$};
\node[state, initial] (3) [below right=16mm of 1] {$\mbox{}$};}
\only<2>{
\node[state] (2) [above right=16mm of 1] {$\mbox{}$};
\node[state] (3) [below right=16mm of 1] {$\mbox{}$};}
\node (a) [right=of 2] {$\ldots$};
\node[state, accepting] (a1) [right=of a] {$\mbox{}$};
\node[state, accepting] (a2) [above=of a1] {$\mbox{}$};
\node[state, accepting] (a3) [below=of a1] {$\mbox{}$};
\node (b) [right=of 3] {$\ldots$};
\node[state, accepting] (b1) [right=of b] {$\mbox{}$};
\node[state, accepting] (b2) [above=of b1] {$\mbox{}$};
\node[state, accepting] (b3) [below=of b1] {$\mbox{}$};
\only<2>{
\path[->] (1) edge node [above] {\alert{$\epsilon$}} (2);
\path[->] (1) edge node [below] {\alert{$\epsilon$}} (3);
}
\begin{pgfonlayer}{background}
\only<1>{\node (1) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (2) (a1) (a2) (a3)] {};}
\only<1>{\node (2) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (3) (b1) (b2) (b3)] {};}
\only<2>{\node (3) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (1) (a2) (a3) (b2) (b3)] {};}
\only<1>{\node [yshift=3mm] at (1.north) {\bl{$r_1$}};}
\only<1>{\node [yshift=3mm] at (2.north) {\bl{$r_2$}};}
\only<2>{\node [yshift=3mm] at (3.north) {\bl{$r_1+ r_2$}};}
\end{pgfonlayer}
\end{tikzpicture}
\small
We (1) need to introduce a new starting state and (2) connect it to the original two starting states.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{Case $r^*$}
\onslide<1>{By recursion we are given an automaton for $r$:\smallskip}
\hspace{2cm}\begin{tikzpicture}[node distance=3mm,
>=stealth',very thick, every state/.style={minimum size=3pt,draw=blue!50,very thick,fill=blue!20},]
\onslide<1>{\node at (0,0) (1) {$\mbox{}$};}
\onslide<2->{\node at (0,0) [state, initial,accepting] (1) {$\mbox{}$};}
\only<1>{\node[state, initial] (2) [right=16mm of 1] {$\mbox{}$};}
\only<2->{\node[state] (2) [right=16mm of 1] {$\mbox{}$};}
\node (a) [right=of 2] {$\ldots$};
\only<1>{
\node[state, accepting] (a1) [right=of a] {$\mbox{}$};
\node[state, accepting] (a2) [above=of a1] {$\mbox{}$};
\node[state, accepting] (a3) [below=of a1] {$\mbox{}$};}
\only<2->{
\node[state] (a1) [right=of a] {$\mbox{}$};
\node[state] (a2) [above=of a1] {$\mbox{}$};
\node[state] (a3) [below=of a1] {$\mbox{}$};}
\only<2->{
\path[->] (1) edge node [above] {\alert{$\epsilon$}} (2);
\path[->] (a1) edge [bend left=45] node [above] {\alert{$\epsilon$}} (1);
\path[->] (a2) edge [bend right] node [below] {\alert{$\epsilon$}} (1);
\path[->] (a3) edge [bend left=45] node [below] {\alert{$\epsilon$}} (1);
}
\begin{pgfonlayer}{background}
\only<1>{\node (1) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (2) (a1) (a2) (a3)] {};}
\only<2->{\node (2) [rounded corners, inner sep=1mm, thick, draw=black!60, fill=black!20, fit= (1) (a2) (a3)] {};}
\only<1>{\node [yshift=3mm] at (1.north) {\bl{$r$}};}
\only<2->{\node [yshift=3mm] at (2.north) {\bl{$r^*$}};}
\end{pgfonlayer}
\end{tikzpicture}\bigskip
\onslide<3->{
Why can't we just have an epsilon transition from the accepting states to the starting state?}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}
\mbox{}\\[-13mm]
\begin{tikzpicture}[y=.2cm, x=.09cm]
%axis
\draw (0,0) -- coordinate (x axis mid) (100,0);
\draw (0,0) -- coordinate (y axis mid) (0,30);
%ticks
\foreach \x in {0,10,...,100}
\draw (\x,1pt) -- (\x,-3pt)
node[anchor=north] {\x};
\foreach \y in {0,5,...,30}
\draw (1pt,\y) -- (-3pt,\y)
node[anchor=east] {\y};
%labels
\node[below=0.6cm] at (x axis mid) {\bl{a}s};
\node[rotate=90, left=1.2cm] at (y axis mid) {secs};
%plots
\draw[color=blue] plot[mark=*, mark options={fill=white}]
file {re-python.data};
\draw[color=red] plot[mark=triangle*, mark options={fill=white} ]
file {nfa.data};
\draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ]
file {re-ruby.data};
%legend
\begin{scope}[shift={(4,20)}]
\draw[color=blue] (0,0) --
plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small Python};
\draw[yshift=-\baselineskip, color=brown] (0,0) --
plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small Ruby};
\draw[yshift=\baselineskip, color=red] (0,0) --
plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small NFA 1};
\end{scope}
\end{tikzpicture}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{Greedy Depth-First}
\hspace{5mm}\mbox{{\lstset{language=Scala}\consolas\fontsize{9}{10}\selectfont
\lstinputlisting{../progs/appG.scala}}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}
\mbox{}\\[-13mm]
\begin{tikzpicture}[y=.2cm, x=.3cm]
%axis
\draw (0,0) -- coordinate (x axis mid) (30,0);
\draw (0,0) -- coordinate (y axis mid) (0,30);
%ticks
\foreach \x in {0,5,...,30}
\draw (\x,1pt) -- (\x,-3pt)
node[anchor=north] {\x};
\foreach \y in {0,5,...,30}
\draw (1pt,\y) -- (-3pt,\y)
node[anchor=east] {\y};
%labels
\node[below=0.6cm] at (x axis mid) {\bl{a}s};
\node[rotate=90, left=1.2cm] at (y axis mid) {secs};
%plots
\draw[color=blue] plot[mark=*, mark options={fill=white}]
file {re-python.data};
\draw[color=red] plot[mark=triangle*, mark options={fill=white} ]
file {nfasearch.data};
\draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ]
file {re-ruby.data};
%legend
\begin{scope}[shift={(4,20)}]
\draw[color=blue] (0,0) --
plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small Python};
\draw[yshift=-\baselineskip, color=brown] (0,0) --
plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small Ruby};
\draw[yshift=\baselineskip, color=red] (0,0) --
plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (0.5,0)
node[right]{\small NFA 2};
\end{scope}
\end{tikzpicture}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<2>[c]
\frametitle{DFA to Rexp}
\begin{center}
\begin{tikzpicture}[scale=2, line width=0.5mm]
\only<1>{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
\only<2->{\node[state, initial,accepting] (q0) at ( 0,1) {$q_0$};}
\only<1>{\node[state] (q1) at ( 1,1) {$q_1$};}
\only<2->{\node[state,accepting] (q1) at ( 1,1) {$q_1$};}
\only<1>{\node[state, accepting] (q2) at ( 2,1) {$q_2$};}
\only<2->{\node[state] (q2) at ( 2,1) {$q_2$};}
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
(q1) edge[bend left] node[above] {$b$} (q0)
(q2) edge[bend left=50] node[below] {$b$} (q0)
(q1) edge node[above] {$a$} (q2)
(q2) edge [loop right] node {$a$} ()
(q0) edge [loop below] node {$b$} ()
;
\end{tikzpicture}
\end{center}
\onslide<3>{How to get from a DFA to a regular expression?}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\begin{center}
\begin{tikzpicture}[scale=2, line width=0.5mm]
\only<1->{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
\only<1->{\node[state] (q1) at ( 1,1) {$q_1$};}
\only<1->{\node[state] (q2) at ( 2,1) {$q_2$};}
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
(q1) edge[bend left] node[above] {$b$} (q0)
(q2) edge[bend left=50] node[below] {$b$} (q0)
(q1) edge node[above] {$a$} (q2)
(q2) edge [loop right] node {$a$} ()
(q0) edge [loop below] node {$b$} ()
;
\end{tikzpicture}
\end{center}\pause\bigskip
\onslide<2->{
\begin{center}
\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
\bl{$q_0$} & \bl{$=$} & \bl{$2\, q_0 + 3 \,q_1 + 4\, q_2$}\\
\bl{$q_1$} & \bl{$=$} & \bl{$2 \,q_0 + 3\, q_1 + 1\, q_2$}\\
\bl{$q_2$} & \bl{$=$} & \bl{$1\, q_0 + 5\, q_1 + 2\, q_2$}\\
\end{tabular}
\end{center}
}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\begin{center}
\begin{tikzpicture}[scale=2, line width=0.5mm]
\only<1->{\node[state, initial] (q0) at ( 0,1) {$q_0$};}
\only<1->{\node[state] (q1) at ( 1,1) {$q_1$};}
\only<1->{\node[state] (q2) at ( 2,1) {$q_2$};}
\path[->] (q0) edge[bend left] node[above] {$a$} (q1)
(q1) edge[bend left] node[above] {$b$} (q0)
(q2) edge[bend left=50] node[below] {$b$} (q0)
(q1) edge node[above] {$a$} (q2)
(q2) edge [loop right] node {$a$} ()
(q0) edge [loop below] node {$b$} ()
;
\end{tikzpicture}
\end{center}\bigskip
\onslide<2->{
\begin{center}
\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
\bl{$q_0$} & \bl{$=$} & \bl{$\epsilon + q_0\,b + q_1\,b + q_2\,b$}\\
\bl{$q_1$} & \bl{$=$} & \bl{$q_0\,a$}\\
\bl{$q_2$} & \bl{$=$} & \bl{$q_1\,a + q_2\,a$}\\
\end{tabular}
\end{center}
}
\onslide<3->{
Arden's Lemma:
\begin{center}
If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$}
\end{center}
}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{DFA Minimisation}
\begin{enumerate}
\item Take all pairs \bl{$(q, p)$} with \bl{$q \not= p$}
\item Mark all pairs that accepting and non-accepting states
\item For all unmarked pairs \bl{$(q, p)$} and all characters \bl{$c$} tests wether
\begin{center}
\bl{$(\delta(q, c), \delta(p,c))$}
\end{center}
are marked. If yes, then also mark \bl{$(q, p)$}.
\item Repeat last step until no chance.
\item All unmarked pairs can be merged.
\end{enumerate}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-2>[c]
\begin{center}
\begin{tikzpicture}[>=stealth',very thick,auto,
every state/.style={minimum size=0pt,inner sep=2pt,draw=blue!50,very thick,fill=blue!20},]
\node[state,initial] (q_0) {$q_0$};
\node[state] (q_1) [right=of q_0] {$q_1$};
\node[state] (q_2) [below right=of q_0] {$q_2$};
\node[state] (q_3) [right=of q_2] {$q_3$};
\node[state, accepting] (q_4) [right=of q_1] {$q_4$};
\path[->] (q_0) edge node [above] {\alert{$a$}} (q_1);
\path[->] (q_1) edge node [above] {\alert{$a$}} (q_4);
\path[->] (q_4) edge [loop right] node {\alert{$a, b$}} ();
\path[->] (q_3) edge node [right] {\alert{$a$}} (q_4);
\path[->] (q_2) edge node [above] {\alert{$a$}} (q_3);
\path[->] (q_1) edge node [right] {\alert{$b$}} (q_2);
\path[->] (q_0) edge node [above] {\alert{$b$}} (q_2);
\path[->] (q_2) edge [loop left] node {\alert{$b$}} ();
\path[->] (q_3) edge [bend left=95, looseness=1.3] node [below] {\alert{$b$}} (q_0);
\end{tikzpicture}
\end{center}\pause
\mbox{}\\[-20mm]\mbox{}
\begin{center}
\begin{tikzpicture}[>=stealth',very thick,auto,
every state/.style={minimum size=0pt,inner sep=2pt,draw=blue!50,very thick,fill=blue!20},]
\node[state,initial] (q_02) {$q_{0, 2}$};
\node[state] (q_13) [right=of q_02] {$q_{1, 3}$};
\node[state, accepting] (q_4) [right=of q_13] {$q_{4\phantom{,0}}$};
\path[->] (q_02) edge [bend left] node [above] {\alert{$a$}} (q_13);
\path[->] (q_13) edge [bend left] node [below] {\alert{$b$}} (q_02);
\path[->] (q_02) edge [loop below] node {\alert{$b$}} ();
\path[->] (q_13) edge node [above] {\alert{$a$}} (q_4);
\path[->] (q_4) edge [loop above] node {\alert{$a, b$}} ();
\end{tikzpicture}\\
minimal automaton
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\begin{itemize}
\item Assuming you have the alphabet \bl{$\{a, b, c\}$}\bigskip
\item Give a regular expression that can recognise all strings that have at least one \bl{$b$}.
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: