\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\begin{document}
% explain what is a context-free grammar and the language it generates
%
\section*{Homework 5}
\begin{enumerate}
\item Define the following regular expressions
\begin{center}
\begin{tabular}{ll}
$r^+$ & (one or more matches)\\
$r^?$ & (zero or one match)\\
$r^{\{n\}}$ & (exactly $n$ matches)\\
$r^{\{m, n\}}$ & (at least $m$ and maximal $n$ matches, with the\\
& \phantom{(}assumption $m \le n$)\\
\end{tabular}
\end{center}
in terms of the usual regular expressions
\begin{center}
$r ::= \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
\end{center}
\item Recall the definitions for $Der$ and $der$ from the lectures.
Prove by induction on $r$ the property that
\[
L(der\,c\,r) = Der\,c\,(L(r))
\]
holds.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: