// epsilon NFAs...immediately translated into NFAs
// (needs :load dfa.scala
// :load nfa.scala in REPL)
// a fixpoint construction
import scala.annotation.tailrec
@tailrec
def fixpT[A](f: A => A, x: A): A = {
val fx = f(x)
if (fx == x) x else fixpT(f, fx)
}
// translates eNFAs directly into NFAs
def eNFA[A, C](starts: Set[A], // the starting states
delta: (A, Option[C]) :=> Set[A], // the epsilon-transitions
fins: A => Boolean) : NFA[A, C] = { // the final states
// epsilon transitions
def enext(q: A) : Set[A] =
applyOrElse(delta, (q, None))
def enexts(qs: Set[A]) : Set[A] =
qs | qs.flatMap(enext(_)) // | is the set-union in Scala
// epsilon closure
def ecl(qs: Set[A]) : Set[A] =
fixpT(enexts, qs)
// "normal" transitions
def next(q: A, c: C) : Set[A] =
applyOrElse(delta, (q, Some(c)))
def nexts(qs: Set[A], c: C) : Set[A] =
ecl(ecl(qs).flatMap(next(_, c)))
// result NFA
NFA(ecl(starts),
{ case (q, c) => nexts(Set(q), c) },
q => ecl(Set(q)) exists fins)
}
// eNFA examples
val enfa_trans1 : (State, Option[Char]) :=> Set[State] =
{ case (Q0, Some('a')) => Set(Q0)
case (Q0, None) => Set(Q1, Q2)
case (Q1, Some('a')) => Set(Q1)
case (Q2, Some('b')) => Set(Q2)
}
val enfa1 = eNFA(Set[State](Q0), enfa_trans1, Set[State](Q2))
//
case object R1 extends State
case object R2 extends State
case object R3 extends State
val enfa_trans2 : (State, Option[Char]) :=> Set[State] =
{ case (R1, Some('b')) => Set(R3)
case (R1, None) => Set(R2)
case (R2, Some('a')) => Set(R1, R3)
}
val enfa2 = eNFA(Set[State](R1), enfa_trans1, Set[State](R3))