// Thompson Construction
// (needs :load nfa.scala
// :load enfa.scala)
// states for Thompson construction
case class TState(i: Int) extends State
object TState {
var counter = 0
def apply() : TState = {
counter += 1;
new TState(counter - 1)
}
}
// some types abbreviations
type NFAt = NFA[TState, Char]
type NFAtrans = (TState, Char) :=> Set[TState]
type eNFAtrans = (TState, Option[Char]) :=> Set[TState]
// for composing an eNFA transition with a NFA transition
implicit class RichPF(val f: eNFAtrans) extends AnyVal {
def +++(g: NFAtrans) : eNFAtrans =
{ case (q, None) => applyOrElse(f, (q, None))
case (q, Some(c)) => applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c)) }
}
// NFA that does not accept any string
def NFA_ZERO(): NFAt = {
val Q = TState()
NFA(Set(Q), { case _ => Set() }, Set())
}
// NFA that accepts the empty string
def NFA_ONE() : NFAt = {
val Q = TState()
NFA(Set(Q), { case _ => Set() }, Set(Q))
}
// NFA that accepts the string "c"
def NFA_CHAR(c: Char) : NFAt = {
val Q1 = TState()
val Q2 = TState()
NFA(Set(Q1), { case (Q1, d) if (c == d) => Set(Q2) }, Set(Q2))
}
// sequence of two NFAs
def NFA_SEQ(enfa1: NFAt, enfa2: NFAt) : NFAt = {
val new_delta : eNFAtrans =
{ case (q, None) if enfa1.fins(q) => enfa2.starts }
eNFA(enfa1.starts, new_delta +++ enfa1.delta +++ enfa2.delta,
enfa2.fins)
}
// alternative of two NFAs
def NFA_ALT(enfa1: NFAt, enfa2: NFAt) : NFAt = {
val Q = TState()
val new_delta : eNFAtrans =
{ case (Q, None) => enfa1.starts | enfa2.starts }
val new_fins = (q: TState) => enfa1.fins(q) || enfa2.fins(q)
eNFA(Set(Q), new_delta +++ enfa1.delta +++ enfa2.delta, new_fins)
}
// star of a NFA
def NFA_STAR(enfa: NFAt) : NFAt = {
val Q = TState()
val new_delta : eNFAtrans =
{ case (Q, None) => enfa.starts
case (q, None) if enfa.fins(q) => Set(Q) }
eNFA(Set(Q), new_delta +++ enfa.delta, Set(Q))
}
// regular expressions
abstract class Rexp
case object ZERO extends Rexp // matches nothing
case object ONE extends Rexp // matches the empty string
case class CHAR(c: Char) extends Rexp // matches a character c
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence
case class STAR(r: Rexp) extends Rexp // star
// thompson construction
def thompson (r: Rexp) : NFAt = r match {
case ZERO => NFA_ZERO()
case ONE => NFA_ONE()
case CHAR(c) => NFA_CHAR(c)
case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2))
case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2))
case STAR(r1) => NFA_STAR(thompson(r1))
}
//optional regular expression (one or zero times)
def OPT(r: Rexp) = ALT(r, ONE)
//n-times regular expression (explicitly expanded)
def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => ONE
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))
}
def tmatches(r: Rexp, s: String) : Boolean =
thompson(r).accepts(s.toList)
def tmatches2(r: Rexp, s: String) : Boolean =
thompson(r).accepts2(s.toList)
// Test Cases
// the evil regular expression a?{n} a{n}
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
// the evil regular expression (a*)*b
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
//for measuring time
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
// the size of the NFA can be large,
// thus slowing down the breadth-first search
for (i <- 1 to 10) {
println(i + ": " + "%.5f".format(time_needed(2, tmatches(EVIL1(i), "a" * i))))
}
for (i <- 1 to 10) {
println(i + " " + "%.5f".format(time_needed(2, tmatches(EVIL2, "a" * i))))
}
// the backtracking needed in depth-first search
// can be painfully slow
for (i <- 1 to 8) {
println(i + " " + "%.5f".format(time_needed(2, tmatches2(EVIL2, "a" * i))))
}