\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\usepackage{../langs}
\begin{document}
\section*{Homework 9}
\HEADER
\begin{enumerate}
\item Describe what is meant by \emph{eliminating tail
recursion}? When can this optimization be applied and
why is it of benefit?
\item A programming language has arithmetic expression. For an
arithmetic expression the compiler of this language produces the
following snippet of JVM code.
\begin{lstlisting}[language=JVMIS,numbers=none]
ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd
\end{lstlisting}
Give the arithmetic expression that produced this code. Make sure
you give all necessary parentheses.
\item Describe what the following JVM instructions do!
\begin{lstlisting}[language=JVMIS2,numbers=none]
ldc 3
iload 3
istore 1
ifeq label
if_icmpge label
\end{lstlisting}
\item What does the following LLVM function calculate? Give the
corresponding arithmetic expression .
\begin{lstlisting}[language=LLVM,numbers=none]
define i32 @foo(i32 %a, i32 %b) {
%1 = mul i32 %a, %a
%2 = mul i32 %a, 2
%3 = mul i32 %2, %b
%4 = add i32 %1, %3
%5 = mul i32 %b, %b
%6 = add i32 %5, %4
ret i32 %6
}
\end{lstlisting}
\item \POSTSCRIPT
% \item It is true (I confirmed it) that
%
% \begin{center} if $\varnothing$ does not occur in $r$
% \;\;then\;\;$L(r) \not= \{\}$
% \end{center}
%
% \noindent
% holds, or equivalently
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$.
% \end{center}
%
% \noindent
% You can prove either version by induction on $r$. The best way to
% make more formal what is meant by `$\varnothing$ occurs in $r$', you can define
% the following function:
%
% \begin{center}
% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
% $occurs(\varnothing)$ & $\dn$ & $true$\\
% $occurs(\epsilon)$ & $\dn$ & $f\!alse$\\
% $occurs (c)$ & $\dn$ & $f\!alse$\\
% $occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
% $occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
% $occurs (r^*)$ & $\dn$ & $occurs(r)$ \\
% \end{tabular}
% \end{center}
%
% \noindent
% Now you can prove
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
% \end{center}
%
% \noindent
% The interesting cases are $r_1 + r_2$ and $r^*$.
% The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example
% is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding
% language is not empty. The obvious extension to include the not-regular expression, $\sim r$,
% also leads to an incorrect statement. Suppose we add the clause
%
% \begin{center}
% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
% $occurs(\sim r)$ & $\dn$ & $occurs(r)$
% \end{tabular}
% \end{center}
%
% \noindent
% to the definition above, then it will not be true that
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
% \end{center}
%
% \noindent
% Assume the alphabet contains just $a$ and $b$, find a counter example to this
% property.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: