\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\begin{document}
\section*{Homework 3}
\begin{enumerate}
\item What is a regular language?
\item Assume you have an alphabet consisting of the letters
$a$, $b$ and $c$ only. (1) Find a regular expression
that recognises the two strings $ab$ and $ac$. (2) Find
a regular expression that matches all strings
\emph{except} these two strings. Note, you can only use
regular expressions of the form
\begin{center} $r ::=
\varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\;
r_1 \cdot r_2 \;|\; r^*$
\end{center}
\item Define the function \textit{zeroable} which takes a
regular expression as argument and returns a boolean.
The function should satisfy the following property:
\begin{center}
$\textit{zeroable(r)} \;\text{if and only if}\; L(r) = \varnothing$
\end{center}
\item Given the alphabet $\{a,b\}$. Draw the automaton that has two states, say $q_0$ and $q_1$.
The starting state is $q_0$ and the final state is $q_1$. The transition
function is given by
\begin{center}
\begin{tabular}{l}
$(q_0, a) \rightarrow q_0$\\
$(q_0, b) \rightarrow q_1$\\
$(q_1, b) \rightarrow q_1$
\end{tabular}
\end{center}
What is the languages recognised by this automaton?
\item Give a non-deterministic finite automaton that can recognise
the language $L(a\cdot (a + b)^* \cdot c)$.
\item Given the following deterministic finite automaton over the alphabet $\{0, 1\}$,
find the corresponding minimal automaton. In case states can be merged,
state clearly which states can
be merged.
\begin{center}
\begin{tikzpicture}[scale=3, line width=0.7mm]
\node[state, initial] (q0) at ( 0,1) {$q_0$};
\node[state] (q1) at ( 1,1) {$q_1$};
\node[state, accepting] (q4) at ( 2,1) {$q_4$};
\node[state] (q2) at (0.5,0) {$q_2$};
\node[state] (q3) at (1.5,0) {$q_3$};
\path[->] (q0) edge node[above] {$0$} (q1)
(q0) edge node[right] {$1$} (q2)
(q1) edge node[above] {$0$} (q4)
(q1) edge node[right] {$1$} (q2)
(q2) edge node[above] {$0$} (q3)
(q2) edge [loop below] node {$1$} ()
(q3) edge node[left] {$0$} (q4)
(q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
(q4) edge [loop right] node {$0, 1$} ()
;
\end{tikzpicture}
\end{center}
\item Define the language $L(M)$ accepted by a deterministic finite automaton $M$.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: