import scala.language.implicitConversions
import scala.language.reflectiveCalls
/* Note, in the lectures I did not show the type consraint
* I <% Seq[_] , which means that the input type I can be
* treated, or seen, as a sequence. */
abstract class Parser[I <% Seq[_], T] {
def parse(ts: I): Set[(T, I)]
def parse_all(ts: I) : Set[T] =
for ((head, tail) <- parse(ts);
if (tail.isEmpty)) yield head
}
class SeqParser[I <% Seq[_], T, S](p: => Parser[I, T],
q: => Parser[I, S]) extends Parser[I, (T, S)] {
def parse(sb: I) =
for ((head1, tail1) <- p.parse(sb);
(head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
}
class AltParser[I <% Seq[_], T](p: => Parser[I, T],
q: => Parser[I, T]) extends Parser[I, T] {
def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}
class FunParser[I <% Seq[_], T, S](p: => Parser[I, T],
f: T => S) extends Parser[I, S] {
def parse(sb: I) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}
// atomic parsers
case class CharParser(c: Char) extends Parser[String, Char] {
def parse(sb: String) =
if (sb != "" && sb.head == c) Set((c, sb.tail)) else Set()
}
case class StringParser(s: String) extends Parser[String, String] {
def parse(sb: String) = {
val (prefix, suffix) = sb.splitAt(s.length)
if (prefix == s) Set((prefix, suffix)) else Set()
}
}
case object NumParser extends Parser[String, Int] {
val reg = "[0-9]+".r
def parse(sb: String) = reg.findPrefixOf(sb) match {
case None => Set()
case Some(s) => Set(sb.splitAt(s.length) match {
case (x, y) => (x.toInt, y)
})
}
}
// convenience
implicit def string2parser(s: String) = StringParser(s)
implicit def char2parser(c: Char) = CharParser(c)
implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {
def || (q : => Parser[I, T]) = new AltParser[I, T](p, q)
def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
}
implicit def StringOps(s: String) = new {
def || (q : => Parser[String, String]) = new AltParser[String, String](s, q)
def || (r: String) = new AltParser[String, String](s, r)
def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)
def ~[S] (q : => Parser[String, S]) =
new SeqParser[String, String, S](s, q)
def ~ (r: String) =
new SeqParser[String, String, String](s, r)
}
// a parse palindromes
lazy val Pal : Parser[String, String] =
(("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } ||
("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } || "a" || "b" || "")
Pal.parse_all("abaaaba")
println("Palindrome: " + Pal.parse_all("abaaaba"))
// well-nested parenthesis parser
lazy val P : Parser[String, String] =
"(" ~ P ~ ")" ~ P ==> { case (((u, x), y), z) => "{" + x + "}" + z } || ""
P.parse_all("(((()()))())")
P.parse_all("(((()()))()))")
P.parse_all(")(")
P.parse_all("()")
// arithmetic expressions
lazy val E: Parser[String, Int] =
(T ~ "+" ~ E) ==> { case ((x, y), z) => x + z } ||
(T ~ "-" ~ E) ==> { case ((x, y), z) => x - z } || T
lazy val T: Parser[String, Int] =
((F ~ "*" ~ T) ==> { case ((x, y), z) => x * z } || F)
lazy val F: Parser[String, Int] =
("(" ~ E ~ ")") ==> { case ((x, y), z) => y } || NumParser
println(E.parse("4*2+3"))
println(E.parse_all("4/2+3"))
println(E.parse("1 + 2 * 3"))
println(E.parse_all("(1+2)+3"))
println(E.parse_all("1+2+3"))
// no left-recursion allowed, otherwise will loop
lazy val EL: Parser[String, Int] =
((EL ~ "+" ~ EL) ==> { case ((x, y), z) => x + z} ||
(EL ~ "*" ~ EL) ==> { case ((x, y), z) => x * z} ||
("(" ~ EL ~ ")") ==> { case ((x, y), z) => y} ||
NumParser)
//println(E.parse_all("1+2+3"))
// a repetition parser
def RepParser[I <% Seq[_], T](p: => Parser[I, T]): Parser[I, List[T]] = {
p ==> { case x => x :: Nil } ||
p ~ RepParser(p) ==> { case (x, y) => x :: y }
}
// a repetition parser
lazy val R : Parser[String, List[Char]] = RepParser('a')
println(R.parse_all("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"))
// non-ambiguous vs ambiguous grammars
lazy val S : Parser[String, String] =
("1" ~ S ~ S) ==> { case ((x, y), z) => x + y + z } || ""
S.parse("1" * 15)
lazy val U : Parser[String, String] =
("1" ~ U) ==> { case (x, y) => x + y } || ""
U.parse("1" * 15)
U.parse("11")
U.parse("11111")
U.parse("11011")
U.parse_all("1" * 100)
U.parse_all("1" * 100 + "0")
lazy val UCount : Parser[String, Int] =
("1" ~ UCount) ==> { case (x, y) => y + 1 } ||
"" ==> { (x) => 0 }
UCount.parse("11111")
UCount.parse_all("11111")
// Single Character parser
lazy val One : Parser[String, String] = "1"
lazy val Two : Parser[String, String] = "2"
One.parse("1")
One.parse("111")
(One ~ One).parse("111")
(One ~ One ~ One).parse("111")
(One ~ One ~ One ~ One).parse("1111")
(One || Two).parse("111")
for (x <- List(1, 2, 3, 4)) println(x)
for (x <- List(1, 2, 3, 4); if (2 < x)) yield (x.toString + x.toString)
for (x <- List("2", "1", "3", "4", "1")) yield (x + x + x)
(1, "one", '1')._3
for ((x, y) <- List((1, "one"), (2, "two"), (3, "three"), (4,"many")); if (y == "many"))
yield (x.toString + y)
// Example section for lazy evaluation
def square(n: Int) = {
n * n
}
square(4 + 3 + 5)
def bar(): Int = {
bar()
3
}
//would loop
square(bar())
// lazy
def foo(n: => Int) = {
print("finished")
}
foo(bar())