slides/slides02.tex
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 02 Oct 2013 01:16:30 +0100
changeset 122 4123344e6915
parent 121 43c116860e47
child 133 09efdf5cf07c
permissions -rw-r--r--
added

\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{beamerthemeplaincu}
%%\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{mathpartir}
\usepackage[absolute,overlay]{textpos}
\usepackage{ifthen}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{calc} 
\usepackage{ulem}
\usepackage{courier}
\usepackage{listings}
\renewcommand{\uline}[1]{#1}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{shapes}
\usetikzlibrary{shadows}
\usetikzlibrary{positioning}
\usetikzlibrary{plotmarks}
\usetikzlibrary{calc}
\usepackage{graphicx} 

\definecolor{javared}{rgb}{0.6,0,0} % for strings
\definecolor{javagreen}{rgb}{0.25,0.5,0.35} % comments
\definecolor{javapurple}{rgb}{0.5,0,0.35} % keywords
\definecolor{javadocblue}{rgb}{0.25,0.35,0.75} % javadoc

\makeatletter
\lst@CCPutMacro\lst@ProcessOther {"2D}{\lst@ttfamily{-{}}{-{}}}
\@empty\z@\@empty
\makeatother

\lstset{language=Java,
	basicstyle=\consolas,
	keywordstyle=\color{javapurple}\bfseries,
	stringstyle=\color{javagreen},
	commentstyle=\color{javagreen},
	morecomment=[s][\color{javadocblue}]{/**}{*/},
	numbers=left,
	numberstyle=\tiny\color{black},
	stepnumber=1,
	numbersep=10pt,
	tabsize=2,
	showspaces=false,
	showstringspaces=false}

\lstdefinelanguage{scala}{
  morekeywords={abstract,case,catch,class,def,%
    do,else,extends,false,final,finally,%
    for,if,implicit,import,match,mixin,%
    new,null,object,override,package,%
    private,protected,requires,return,sealed,%
    super,this,throw,trait,true,try,%
    type,val,var,while,with,yield},
  otherkeywords={=>,<-,<\%,<:,>:,\#,@,->},
  sensitive=true,
  morecomment=[l]{//},
  morecomment=[n]{/*}{*/},
  morestring=[b]",
  morestring=[b]',
  morestring=[b]"""
}

\lstset{language=Scala,
	basicstyle=\consolas,
	keywordstyle=\color{javapurple}\bfseries,
	stringstyle=\color{javagreen},
	commentstyle=\color{javagreen},
	morecomment=[s][\color{javadocblue}]{/**}{*/},
	numbers=left,
	numberstyle=\tiny\color{black},
	stepnumber=1,
	numbersep=10pt,
	tabsize=2,
	showspaces=false,
	showstringspaces=false}

% beamer stuff 
\renewcommand{\slidecaption}{AFL 02, King's College London, 2.~October 2013}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}       
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions

% The data files, written on the first run.
\begin{filecontents}{re-python.data}
1 0.029
5 0.029
10 0.029
15 0.032
16 0.042
17 0.042
18 0.055
19 0.084
20 0.136
21 0.248
22 0.464
23 0.899
24 1.773
25 3.505
26 6.993
27 14.503
28 29.307
#29 58.886
\end{filecontents}

\begin{filecontents}{re-ruby.data}
1 0.00006
2 0.00003
3 0.00001
4 0.00001
5 0.00001
6 0.00002
7 0.00002
8 0.00004
9 0.00007
10 0.00013
11 0.00026
12 0.00055
13 0.00106
14 0.00196
15 0.00378
16 0.00764
17 0.01606
18 0.03094
19 0.06508
20 0.12420
21 0.25393
22 0.51449
23 1.02174
24 2.05998
25 4.22514
26 8.42479
27 16.88678
28 34.79653
\end{filecontents}

\begin{filecontents}{re1.data}
1 0.00179
2 0.00011
3 0.00014
4 0.00026
5 0.00050
6 0.00095
7 0.00190
8 0.00287
9 0.00779
10 0.01399
11 0.01894
12 0.03666
13 0.07994
14 0.08944
15 0.02377
16 0.07392
17 0.22798
18 0.65310
19 2.11360
20 6.31606
21 21.46013
\end{filecontents}

\begin{filecontents}{re2a.data}
1 0.00227
5 0.00027
10 0.00075
15 0.00178
20 0.00102
25 0.00028
30 0.00040
35 0.00052
40 0.00075
45 0.00125
50 0.00112
55 0.00099
60 0.00113
65 0.00137
70 0.00170
\end{filecontents}

\begin{filecontents}{re2b.data}
1 0.00020
51 0.00080
101 0.00678
151 0.01792
201 0.04815
251 0.09648
301 0.23195
351 0.52646
401 0.96277
451 1.57726
501 2.00166
551 2.98341
601 4.81181
651 6.57054
701 9.73973
751 14.25762
801 14.80760
851 19.60958
901 25.43550
951 31.96038
\end{filecontents}

\begin{filecontents}{re3.data}
1 0.001605
501 0.131066
1001 0.057885
1501 0.136875
2001 0.176238
2501 0.254363
3001 0.37262
3501 0.500946
4001 0.638384
4501 0.816605
5001 1.00491
5501 1.232505
6001 1.525672
6501 1.757502
7001 2.092784
7501 2.429224
8001 2.803037
8501 3.463045
9001 3.609
9501 4.081504
10001 4.54569
10501 6.17789
11001 6.77242
11501 7.95864
\end{filecontents}




\begin{document}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
  \begin{tabular}{@ {}c@ {}}
  \\[-3mm]
  \LARGE Automata and \\[-2mm] 
  \LARGE Formal Languages (2)\\[3mm] 
  \end{tabular}}

  %\begin{center}
  %\includegraphics[scale=0.3]{pics/ante1.jpg}\hspace{5mm}
  %\includegraphics[scale=0.31]{pics/ante2.jpg}\\
  %\footnotesize\textcolor{gray}{Antikythera automaton, 100 BC (Archimedes?)}
  %\end{center}

\normalsize
  \begin{center}
  \begin{tabular}{ll}
  Email:  & christian.urban at kcl.ac.uk\\
  Office: & S1.27 (1st floor Strand Building)\\
  Slides: & KEATS 
  \end{tabular}
  \end{center}


\end{frame}}
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Languages\end{tabular}}

A \alert{language} is a set of strings.\bigskip

A \alert{regular expression} specifies a set of strings, or language.
  
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Strings\end{tabular}}

Different ways of writing strings:

\begin{center}
\begin{tabular}{ccc}
\bl{\consolas"$hello$"}\quad{} &  \bl{$[h, e, l, l, o]$} & \quad\bl{$h\!::\!e\!::\!l\!::\!l\!::\!o\!::\!N\!il$}\bigskip\\
\bl{\consolas ""}       &       \bl{$[]$}                & \bl{$N$\!$il$}
\end{tabular}
\end{center}\pause

The concatenation operation on strings and sets of strings:

\begin{center}
\begin{tabular}{l}
\bl{{\consolas"$f\!oo$"}$\;@\;${\consolas"$bar$"}$\;=\;${\consolas"$f\!oobar$"}}\medskip\\
\bl{$A \;@\; B \dn \{ s_1 @ s_2 \mid s_1 \in A \wedge s_2 \in B\}$}
\end{tabular}
\end{center}
  
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Regular Expressions\end{tabular}}

Their inductive definition:


\begin{textblock}{6}(2,6.5)
  \begin{tabular}{@ {}rrl@ {\hspace{13mm}}l}
  \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}  & null\\
         & \bl{$\mid$} & \bl{$\epsilon$}        & empty string / {\consolas""} / $[]$\\
         & \bl{$\mid$} & \bl{$c$}                         & character\\
         & \bl{$\mid$} & \bl{$r_1 \cdot r_2$} & sequence\\
         & \bl{$\mid$} & \bl{$r_1 + r_2$}  & alternative / choice\\
         & \bl{$\mid$} & \bl{$r^*$}                   & star (zero or more)\\
  \end{tabular}
  \end{textblock}
  
  
\only<2->{
\begin{textblock}{9}(4,0.5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
{\normalsize\color{darkgray}
\begin{minipage}{9cm}
\hspace{5mm}\mbox{{\lstset{language=Scala}\fontsize{8}{10}\selectfont
\texttt{\lstinputlisting{../progs/app51.scala}}}}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
  
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Meaning of a\\[-2mm] Regular Expression\end{tabular}}

\begin{textblock}{15}(1,4)
 \begin{tabular}{@ {}rcl}
 \bl{$L(\varnothing)$}     & \bl{$\dn$} & \bl{$\varnothing$}\\
 \bl{$L(\epsilon)$}          & \bl{$\dn$} & \bl{$\{$""$\}$}\\
 \bl{$L(c)$}                     & \bl{$\dn$} & \bl{$\{"c"\}$}\\
 \bl{$L(r_1 + r_2)$}        & \bl{$\dn$} & \bl{$L(r_1) \cup L(r_2)$}\\
 \bl{$L(r_1 \cdot r_2)$}  & \bl{$\dn$} & \bl{$L(r_1) \,@\, L(r_2)$}\\
 \bl{$L(r^*)$}                   & \bl{$\dn$} & \bl{$\bigcup_{n \ge 0} L(r)^n$}\\
  \end{tabular}\bigskip
  
\only<2->{  
\hspace{5mm}\textcolor{blue}{$L(r)^0 \;\dn\; \{""\}$}\\
\textcolor{blue}{$L(r)^{n+1} \;\dn\; L(r) \,@\, L(r)^n$}}  
\end{textblock}



\only<1->{
\begin{textblock}{6}(9,12)\small
\bl{$L$} is a function from regular expressions to sets of strings\\
\bl{$L$ : Rexp $\Rightarrow$ Set$[$String$]$}
\end{textblock}}


\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]

\large
\begin{center}
What is \bl{$L(a^*)$}?
\end{center}  
  
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



\newcommand{\YES}{\textcolor{gray}{yes}}
\newcommand{\NO}{\textcolor{gray}{no}}
\newcommand{\FORALLR}{\textcolor{gray}{$\forall$ r.}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Reg Exp Equivalences\end{tabular}}

\begin{center}
\begin{tabular}{l@ {\hspace{7mm}}rcl@ {\hspace{7mm}}l}
&\bl{$(a + b)  + c$} & \bl{$\equiv^?$} & \bl{$a + (b + c)$} & \onslide<2->{\YES}\\
&\bl{$a + a$} & \bl{$\equiv^?$} & \bl{$a$} & \onslide<3->{\YES}\\
&\bl{$(a \cdot b)  \cdot c$} & \bl{$\equiv^?$} & \bl{$a \cdot (b \cdot c)$} & \onslide<4->{\YES}\\
&\bl{$a \cdot a$} & \bl{$\equiv^?$} & \bl{$a$} & \onslide<5->{\NO}\\
&\bl{$\epsilon^*$} & \bl{$\equiv^?$} & \bl{$\epsilon$} & \onslide<6->{\YES}\\
&\bl{$\varnothing^*$} & \bl{$\equiv^?$} & \bl{$\varnothing$} & \onslide<7->{\NO}\\
\FORALLR &\bl{$r \cdot \epsilon$} & \bl{$\equiv^?$} & \bl{$r$} & \onslide<8->{\YES}\\
\FORALLR &\bl{$r + \epsilon$} & \bl{$\equiv^?$} & \bl{$r$} & \onslide<9->{\NO}\\
\FORALLR &\bl{$r + \varnothing$} & \bl{$\equiv^?$} & \bl{$r$} & \onslide<10->{\YES}\\
\FORALLR &\bl{$r \cdot \varnothing$} & \bl{$\equiv^?$} & \bl{$r$} & \onslide<11->{\NO}\\
&\bl{$c \cdot (a + b)$} & \bl{$\equiv^?$} & \bl{$(c \cdot a) + (c \cdot b)$} & \onslide<12->{\YES}\\
&\bl{$a^*$} & \bl{$\equiv^?$} & \bl{$\epsilon + (a \cdot a^*)$} & \onslide<13->{\YES}
\end{tabular}
\end{center}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Specification\\[-1mm] for Matching\end{tabular}}

\large
a regular expression \bl{$r$} matches a string \bl{$s$}\\ if and only if

\begin{center}
\bl{$s \in L(r)$}\\ 
\end{center}\bigskip\bigskip\pause

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tikzpicture}[y=.2cm, x=.3cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (30,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,5,...,30}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(4,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0) 
		node[right]{\small Python};
	\draw[yshift=-\baselineskip, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Ruby};
	\end{scope}
\end{tikzpicture}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Evil Regular Expressions\end{tabular}}

\begin{itemize}
\item \alert{R}egular \alert{e}xpression \alert{D}enial \alert{o}f \alert{S}ervice (ReDoS)\bigskip
\item Evil regular expressions\medskip
\begin{itemize}
\item \bl{$(a?\{n\}) \cdot a\{n\}$}
\item \bl{$(a^+)^+$}
\item \bl{$([a$\,-\,$z]^+)^*$}
\item \bl{$(a + a \cdot a)^+$}
\item \bl{$(a + a?)^+$}
\end{itemize}
\end{itemize}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}A Matching Algorithm\end{tabular}}

\small
\ldots{}whether a regular expression can match the empty string:
\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
\bl{$nullable(\varnothing)$}      & \bl{$\dn$} & \bl{$f\!\/alse$}\\
\bl{$nullable(\epsilon)$}           & \bl{$\dn$} &  \bl{$true$}\\
\bl{$nullable (c)$}                    & \bl{$\dn$} &  \bl{$f\!alse$}\\
\bl{$nullable (r_1 + r_2)$}       & \bl{$\dn$} &  \bl{$nullable(r_1) \vee nullable(r_2)$} \\ 
\bl{$nullable (r_1 \cdot r_2)$} & \bl{$\dn$} &  \bl{$nullable(r_1) \wedge nullable(r_2)$} \\
\bl{$nullable (r^*)$}                 & \bl{$\dn$} & \bl{$true$} \\
\end{tabular}
\end{center}

\only<2->{
\begin{textblock}{9}(3.4,10)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
{\normalsize\color{darkgray}
\begin{minipage}{9cm}
\hspace{5mm}\mbox{{\lstset{language=Scala}\fontsize{8}{10}\selectfont
\texttt{\lstinputlisting{../progs/app5.scala}}}}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}
  
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Derivative of a Rexp\end{tabular}}

\large
If \bl{$r$} matches the string \bl{$c\!::\!s$}, what is a regular expression that matches \bl{$s$}?\bigskip\bigskip\bigskip\bigskip

\small
\bl{$der\,c\,r$} gives the answer
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Derivative of a Rexp (2)\end{tabular}}

\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
  \bl{$der\, c\, (\varnothing)$}      & \bl{$\dn$} & \bl{$\varnothing$} & \\
  \bl{$der\, c\, (\epsilon)$}           & \bl{$\dn$} & \bl{$\varnothing$} & \\
  \bl{$der\, c\, (d)$}                     & \bl{$\dn$} & \bl{if $c = d$ then $\epsilon$ else $\varnothing$} & \\
  \bl{$der\, c\, (r_1 + r_2)$}        & \bl{$\dn$} & \bl{$der\, c\, r_1 + der\, c\, r_2$} & \\
  \bl{$der\, c\, (r_1 \cdot r_2)$}  & \bl{$\dn$}  & \bl{if $nullable (r_1)$}\\
  & & \bl{then $(der\,c\,r_1) \cdot r_2 + der\, c\, r_2$}\\ 
  & & \bl{else $(der\, c\, r_1) \cdot r_2$}\\
  \bl{$der\, c\, (r^*)$}          & \bl{$\dn$} & \bl{$(der\,c\,r) \cdot (r^*)$} &\smallskip\\\pause

  \bl{$der\!s\, []\, r$}     & \bl{$\dn$} & \bl{$r$} & \\
  \bl{$der\!s\, (c\!::\!s)\, r$} & \bl{$\dn$} & \bl{$der\!s\,s\,(der\,c\,r)$} & \\
  \end{tabular}
\end{center}

\only<3->{
\begin{textblock}{10.5}(2,5)
\begin{tikzpicture}
\draw (0,0) node[inner sep=2mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
{\normalsize\color{darkgray}
\begin{minipage}{10.5cm}
\hspace{5mm}\mbox{{\lstset{language=Scala}\fontsize{8}{10}\selectfont
\texttt{\lstinputlisting{../progs/app6.scala}}}}
\end{minipage}};
\end{tikzpicture}
\end{textblock}}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Examples\end{tabular}}

Given \bl{$r \dn ((a \cdot b) + b)^*$} what is

\begin{center}
\begin{tabular}{l}
\bl{$der\,a\,r$}\\
\bl{$der\,b\,r$}
\end{tabular}
\end{center}


\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tikzpicture}[y=.2cm, x=.3cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (30,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,5,...,30}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=red] plot[mark=triangle*, mark options={fill=white} ] 
		file {re1.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
		
    
	%legend
	\begin{scope}[shift={(4,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0) 
		node[right]{\small Python};
	\draw[yshift=-\baselineskip, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Ruby};
        \draw[yshift=\baselineskip, color=red] (0,0) -- 
		plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Scala V1};	
	\end{scope}
\end{tikzpicture}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Proofs about Rexps\end{tabular}}

Remember their inductive definition:\\[5cm]

\begin{textblock}{6}(5,5)
  \begin{tabular}{@ {}rrl}
  \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}\\
         & \bl{$\mid$} & \bl{$\epsilon$}       \\
         & \bl{$\mid$} & \bl{$c$}                        \\
         & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
         & \bl{$\mid$} & \bl{$r_1 + r_2$}  \\
         & \bl{$\mid$} & \bl{$r^*$}                  \\
  \end{tabular}
  \end{textblock}

If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Rexp (2)\end{tabular}}

\begin{itemize}
\item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
\item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already
holds for \bl{$r$}.
\end{itemize}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Rexp (3)\end{tabular}}

Assume \bl{$P(r)$} is the property:

\begin{center}
\bl{$nullable(r)$} if and only if \bl{$"" \in L(r)$}
\end{center}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Rexp (4)\end{tabular}}

Let \bl{$Der\,c\,A$} be the set defined as

\begin{center}
\bl{$Der\,c\,A \dn \{ s \;|\;  c\!::\!s \in A\}$ } 
\end{center}

We can prove

\begin{center}
\bl{$L(der\,c\,r) = Der\,c\,(L(r))$}
\end{center}

by induction on \bl{$r$}.

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Strings\end{tabular}}

If we want to prove something, say a property \bl{$P(s)$}, for all strings \bl{$s$} then \ldots\bigskip

\begin{itemize}
\item \bl{$P$} holds for the empty string, and\medskip
\item \bl{$P$} holds for the string \bl{$c\!::\!s$} under the assumption that \bl{$P$}
already holds for \bl{$s$}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Strings (2)\end{tabular}}

We can finally prove

\begin{center}
\bl{$matcher(r, s)$}  if and only if  \bl{$s \in L(r)$} 
\end{center}


\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tikzpicture}[y=.2cm, x=.3cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (30,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,5,...,30}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=red] plot[mark=triangle*, mark options={fill=white} ] 
		file {re1.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
		
    
	%legend
	\begin{scope}[shift={(4,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0) 
		node[right]{\small Python};
	\draw[yshift=-\baselineskip, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Ruby};
        \draw[yshift=\baselineskip, color=red] (0,0) -- 
		plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Scala V1};	
	\end{scope}
\end{tikzpicture}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}A Problem\end{tabular}}

We represented the ``n-times'' \bl{$a\{n\}$} as a sequence regular expression:

\begin{center}
\begin{tabular}{rl}
1: & \bl{$a$}\\
2: & \bl{$a\cdot a$}\\
3: & \bl{$a\cdot a\cdot a$}\\
& \ldots\\
13: & \bl{$a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a$}\\
& \ldots\\
20:
\end{tabular}
\end{center}

This problem is aggravated with \bl{$a?$} being represented as \bl{$\epsilon + a$}.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Solving the Problem\end{tabular}}

What happens if we extend our regular expressions

\begin{center}
\begin{tabular}{rcl}
\bl{$r$} & \bl{$::=$} & \bl{\ldots}\\
             & \bl{$\mid$} & \bl{$r\{n\}$}\\
             & \bl{$\mid$} & \bl{$r?$} 
\end{tabular}
\end{center}

What is their meaning? What are the cases for \bl{$nullable$} and \bl{$der$}?
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tikzpicture}[y=.2cm, x=.12cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (70,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,10,...,70}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=red] plot[mark=triangle*, mark options={fill=white} ] 
		file {re1.data};
         \draw[color=green] plot[mark=square*, mark options={fill=white} ] 
		file {re2a.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(4,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (0.5,0) 
		node[right]{\small Python};
	\draw[yshift=-\baselineskip, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Ruby};
	\draw[yshift=\baselineskip, color=red] (0,0) -- 
		plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Scala V1};	
	\draw[yshift=2\baselineskip, color=green] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (0.5,0)
		node[right]{\small Scala V2};	
	\end{scope}
\end{tikzpicture}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-13mm]

\begin{tabular}{@ {\hspace{-5mm}}l}
\begin{tikzpicture}[y=.2cm, x=.01cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (1000,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,100,...,1000}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=blue] plot[mark=*, mark options={fill=white}] 
		file {re-python.data};
	\draw[color=red] plot[mark=triangle*, mark options={fill=white} ] 
		file {re1.data};
         \draw[color=green] plot[mark=square*, mark options={fill=white} ] 
		file {re2b.data};
         \draw[color=brown] plot[mark=pentagon*, mark options={fill=white} ] 
		file {re-ruby.data};
    
	%legend
	\begin{scope}[shift={(100,20)}] 
	\draw[color=blue] (0,0) -- 
		plot[mark=*, mark options={fill=white}] (0.25,0) -- (50,0) 
		node[right]{\small Python};
	\draw[yshift=-13, color=brown] (0,0) -- 
		plot[mark=pentagon*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Ruby};
	\draw[yshift=13, color=red] (0,0) -- 
		plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Scala V1};	
	\draw[yshift=26, color=green] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Scala V2};	
	\end{scope}
\end{tikzpicture}
\end{tabular}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Examples\end{tabular}}

Recall the example of \bl{$r \dn ((a \cdot b) + b)^*$} with

\begin{center}
\begin{tabular}{l}
\bl{$der\,a\,r = ((\epsilon \cdot b) + \varnothing) \cdot r$}\\
\bl{$der\,b\,r = ((\varnothing \cdot b) + \epsilon)\cdot r$}
\end{tabular}
\end{center}

What are these regular expressions equal to?

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}\bl{$(a?\{n\}) \cdot a\{n\}$}\end{tabular}}

\mbox{}\\[-9mm]

\begin{tabular}{@ {\hspace{-5mm}}l}
\begin{tikzpicture}[y=.2cm, x=.0008cm]
 	%axis
	\draw (0,0) -- coordinate (x axis mid) (12000,0);
    	\draw (0,0) -- coordinate (y axis mid) (0,30);
    	%ticks
    	\foreach \x in {0,2000,...,12000}
     		\draw (\x,1pt) -- (\x,-3pt)
			node[anchor=north] {\x};
    	\foreach \y in {0,5,...,30}
     		\draw (1pt,\y) -- (-3pt,\y) 
     			node[anchor=east] {\y}; 
	%labels      
	\node[below=0.6cm] at (x axis mid) {\bl{a}s};
	\node[rotate=90, left=1.2cm] at (y axis mid) {secs};

	%plots
	\draw[color=red] plot[mark=triangle*, mark options={fill=white} ] 
		file {re1.data};
         \draw[color=green] plot[mark=square*, mark options={fill=white} ] 
		file {re2b.data};
	\draw[color=black] plot[mark=square*, mark options={fill=white} ] 
		file {re3.data};	 
    
	%legend
	\begin{scope}[shift={(2000,20)}] 
	\draw[color=red] (0,0) -- 
		plot[mark=triangle*, mark options={fill=white}] (0.25,0) -- (50,0) 
		node[right]{\small Scala V1};
	\draw[yshift=13, color=green] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Scala V2};	
	\draw[yshift=26, color=black] (0,0) -- 
		plot[mark=square*, mark options={fill=white}] (0.25,0) -- (50,0)
		node[right]{\small Scala V3};	
	\end{scope}
\end{tikzpicture}
\end{tabular}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Regular Expressions\end{tabular}}

\begin{itemize}
\item symbols, digits
\item identifiers
\item numbers (non-leading zeros)
\item keywords
\item comments
\end{itemize}\bigskip


\mbox{}\hfill\bl{\url{http://www.regexper.com}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Regular Languages\end{tabular}}

A language (a set of strings) is \alert{regular} iff there exists
a regular expression that recognises all its strings.\bigskip\bigskip\pause


Do you think there are languages that are {\bf not} regular?
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Automata\end{tabular}}

A deterministic finite automaton consists of:

\begin{itemize}
\item a set of states
\item one of these states is the start state
\item some states are accepting states, and
\item there is transition function\medskip 

\small
which takes a state as argument and a character and produces a new state\smallskip\\
this function might not always be defined
\end{itemize}

\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   




\end{document}

%%% Local Variables:  
%%% mode: latex
%%% TeX-master: t
%%% End: