progs/token.scala
author Christian Urban <urbanc@in.tum.de>
Sat, 09 Jun 2018 21:02:04 +0100
changeset 552 40fa0f628dc4
parent 550 71fc4a7a7039
child 579 1a521448d211
permissions -rw-r--r--
updated

import scala.language.implicitConversions    
import scala.language.reflectiveCalls

abstract class Rexp 
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
case class STAR(r: Rexp) extends Rexp 

// ALT is now an abbreviation
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))

// proj is now used instead for Left and Right
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Proj(n: Int, v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(s: String, v: Val) extends Val
 
// for manipulating projections  
def IncProj(m: Int, v: Val) = v match {
  case Proj(n, v) => Proj(n + m, v)
}

def DecProj(m: Int, v: Val) = v match {
  case Proj(n, v) => Proj(n - m, v)
}


// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
  case Nil => ONE
  case c::Nil => CHAR(c)
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)

implicit def RexpOps(r: Rexp) = new {
  def | (s: Rexp) = ALT(r, s)
  def % = STAR(r)
  def ~ (s: Rexp) = SEQ(r, s)
}

implicit def stringOps(s: String) = new {
  def | (r: Rexp) = ALT(s, r)
  def | (r: String) = ALT(s, r)
  def % = STAR(s)
  def ~ (r: Rexp) = SEQ(s, r)
  def ~ (r: String) = SEQ(s, r)
}

// string of a regular expression - for testing purposes 
def string(r: Rexp) : String = r match {
  case ZERO => "0"
  case ONE => "1"
  case CHAR(c) => c.toString 
  case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
  case SEQ(CHAR(c), CHAR(d)) => s"${c}${d}"
  case SEQ(ONE, CHAR(c)) => s"1${c}"
  case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
  case STAR(r) => s"(${string(r)})*"
}

// size of a regular expression - for testing purposes 
def size(r: Rexp) : Int = r match {
  case ZERO => 1
  case ONE => 1
  case CHAR(_) => 1
  case ALTS(rs) => 1 + rs.map(size).sum
  case SEQ(r1, r2) => 1 + size(r1) + size(r2)
  case STAR(r) => 1 + size(r)
}


// nullable function: tests whether the regular 
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
  case ZERO => false
  case ONE => true
  case CHAR(_) => false
  case ALTS(rs) => rs.exists(nullable)
  case SEQ(r1, r2) => nullable(r1) && nullable(r2)
  case STAR(_) => true
}

// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
  case ZERO => ZERO
  case ONE => ZERO
  case CHAR(d) => if (c == d) ONE else ZERO
  case ALTS(rs) => ALTS(rs.map(der(c, _)))
  case SEQ(r1, r2) => 
    if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
    else SEQ(der(c, r1), r2)
  case STAR(r) => SEQ(der(c, r), STAR(r))
}

// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
  case Nil => r
  case c::s => ders(s, der(c, r))
}

val test : Rexp= STAR("a" | "aa")
size(test)
size(der('a', test))
size(der('a', der('a', test)))

size(ders("aaaaaa".toList, test)) 
string(ders("aaaaaa".toList, test))


// extracts a string from value
def flatten(v: Val) : String = v match {
  case Empty => ""
  case Chr(c) => c.toString
  case Proj(_, v) => flatten(v)
  case Sequ(v1, v2) => flatten(v1) ++ flatten(v2)
  case Stars(vs) => vs.map(flatten).mkString
}


// mkeps
def mkeps(r: Rexp) : Val = r match {
  case ONE => Empty
  case ALTS(r1::rs) => 
    if (nullable(r1)) Proj(0, mkeps(r1)) 
    else IncProj(1, mkeps(ALTS(rs)))
  case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
  case STAR(r) => Stars(Nil)
}

// injection 
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
  case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
  case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
  case (SEQ(r1, r2), Proj(0, Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
  case (SEQ(r1, r2), Proj(1, v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
  case (ALTS(rs), Proj(n, v1)) => Proj(n, inj(rs(n), c, v1))
  case (CHAR(d), Empty) => Chr(c) 
}

// main lexing function (produces a value)
//  - does  not simplify
def lex(r: Rexp, s: List[Char]) : Val = s match {
  case Nil => {
    //println(s"Size of the last regex: ${size(r)}")
    if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
  }
  case c::cs => inj(r, c, lex(der(c, r), cs))
}

def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)

lexing("a" | ZERO, "a")
lexing(ZERO | "a", "a")

lexing(("ab" | "a") ~ ("b" | ONE), "ab")


// removing duplicate regular expressions
val unit = (ZERO, F_ERROR(_))

def dups2(xs: List[(Rexp, Val => Val)], 
	 acc: List[(Rexp, Val => Val)] = Nil) : List[(Rexp, Val => Val)] = xs match {
  case Nil => acc
  case (x, y)::xs => 
	     if (acc.map(_._1).contains(x)) dups2(xs, acc :+ unit)
	     else dups2(xs, acc :+ (x, y))
}

def dups(xs: List[(Rexp, Val => Val)]) : List[(Rexp, Val => Val)] = {
  val out = dups2(xs)
  //if (out != xs) {
  //  println()
  //  println(s"Input ${string(ALTS(xs.map(_._1)))}")
  //  println(s"Ouput ${string(ALTS(out.map(_._1)))}")
  //}
  out
}


// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
  case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = 
  (v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = 
  (v:Val) => Sequ(f1(v), f2(Empty))
def F_ERROR(v: Val): Val = throw new Exception("error")
def F_PRINT(v: Val): Val = {
  println(s"value is ${v}")
  throw new Exception("caught error")
}

def flats(rs: List[Rexp], seen: Set[Rexp]) : (List[Rexp], Val => Val) = {
  //println(s"I am flats: ${string(ALTS(rs))}")
  //println(s"The size of seen is ${seen.size}, ${seen.map(string)}")
  rs match {
  case Nil => (Nil, F_ERROR)
  case r::rs1 if seen.contains(simp(r)._1) => {
    //println(s" I remove ${string(r)}")
    val (rs2, f) = flats(rs1, seen)
    (rs2, (v:Val) => IncProj(1, f(v)))
  }
  case ZERO::rs1 => {
    val (rs2, f) = flats(rs1, seen)
    (rs2, (v:Val) => IncProj(1, f(v)))
  }
  case ALTS(rs0)::rs1 => {
    val (rss, f1) = flats(rs0, seen)
    val (rs2, f2) = flats(rs1, rss.toSet ++ seen)
    (rss:::rs2, (v:Val) => v match {
      case Proj(n, vn) => 
     	if (n < rss.length) Proj(0, f1(Proj(n, vn)))
  	else IncProj(1, f2(Proj(n - rss.length, vn)))
    })
  }
  case r1::rs2 => {
    val (r1s, f1) = simp(r1)
    val (rs3, f2) = flats(rs2, seen + r1s)
    (r1s::rs3, (v:Val) => v match {
      case Proj(0, vn) => Proj(0, f1(vn))
      case Proj(n, vn) => IncProj(1, f2(Proj(n - 1, vn)))
    })
  }
}}

// simplification of regular expressions returning also an
// rectification function; no simplification under STAR 
def simp(r: Rexp): (Rexp, Val => Val) = r match {
  case ALTS(rs) => {
    val (rs_s, fs_s) = flats(rs, Set())
    rs_s match {
      case Nil => (ZERO, F_ERROR) 
      case r::Nil => (r, (v:Val) => fs_s(Proj(0, v)))
      case rs_sd => (ALTS(rs_sd), fs_s)
    }
  }
  case SEQ(r1, r2) => {
    val (r1s, f1s) = simp(r1)
    val (r2s, f2s) = simp(r2)
    (r1s, r2s) match {
      case (ZERO, _) => (ZERO, F_ERROR)
      case (_, ZERO) => (ZERO, F_ERROR)
      case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
      case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
      case (ALTS(rs), r2s) => (ALTS(rs.map(SEQ(_, r2s))), 
			       (v:Val) => v match {
				 case Proj(n, Sequ(v1, v2)) => Sequ(f1s(Proj(n, v1)), f2s(v2))
			       }
			      )
      case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
    }
  }
  case r => (r, F_ID)
}

def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
  case Nil => {
    //println(s"Size of the last regex: ${size(r)}")
    //println(s"${string(r)}")
    if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
  }
  case c::cs => {
    val rd = der(c, r)     
    val (r_simp, f_simp) = simp(rd)
    println(s"BEFORE ${string(rd)}")
    println(s"AFTER  ${string(r_simp)}")
    val rec = lex_simp(r_simp, cs)
    inj(r, c, f_simp(rec))
  }
}

def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)


lexing_simp("ab" | "aa", "ab")
lexing_simp("ab" | "aa", "aa")

lexing(STAR("a" | "aa"), "aaaaa")
lexing_simp(STAR("a" | "aa"), "aaaaa")

lexing(STAR("a" | "aa"), "aaaaaaaaaaa")
lexing_simp(STAR("a" | "aa"), "aaaaaaaaaaa")

lexing_simp(STAR("a" | "aa"), "a" * 2)
lexing_simp(STAR("a" | "aa"), "a" * 3)
lexing_simp(STAR("a" | "aa"), "a" * 4)


lexing_simp(STAR("a" | "aa"), "a" * 20)
lexing_simp(STAR("a" | "aa"), "a" * 2000)

lexing(ALTS(List("aa", "aa", "aa", "ab", "ab")), "ab")
lexing_simp(ALTS(List("aa", "aa", "aa", "ab", "ab")), "ab")

lexing(ALTS(List(("aa" | "ab" | "aa"), "aa", "ab", "ab")), "ab")
lexing_simp(ALTS(List(("aa" | "ab" | "aa"), "aa", "ab", "ab")), "ab")

lexing(ALTS(List(ZERO, ZERO, ONE, "aa", ZERO, "aa", "aa")), "aa")
lexing_simp(ALTS(List(ZERO, ZERO, ONE, "aa", ZERO, "aa", "aa")), "aa")

lexing_simp(ONE | ZERO, "")
lexing_simp(ZERO | ONE, "")

lexing("a" | ZERO, "a")
lexing_simp("a" | ZERO, "a")
lexing(ZERO | "a", "a")
lexing_simp(ZERO | "a", "a")

lexing(ALTS(List(ZERO, ZERO, ONE, "a", ZERO, "a")), "a")
lexing_simp(ALTS(List(ZERO, ZERO, ONE, "a", ZERO, "a")), "a")
lexing(ALTS(List("a")), "a")
lexing_simp(ALTS(List("a")), "a")

lexing_simp(("a" | ZERO) | ZERO, "a")
lexing_simp("a" | (ZERO | ZERO), "a")
lexing_simp(ZERO | ("a" | ZERO), "a")


lexing_simp("abc", "abc")

lexing_simp("abc" | ONE, "abc")

lexing(("a" | "ab") ~ ("b" | ""), "ab")
lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")
lexing_simp(("ba" | "c" | "ab"), "ab")

lexing(ALTS(List(ALTS(Nil), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(Nil), "c", "ab")), "ab")

lexing(ALTS(List(ALTS("ab"::Nil), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS("ab"::Nil), "c", "ab")), "ab")

lexing(ALTS(List(ALTS(List("a","ab")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("a","ab")), "c", "ab")), "ab")

lexing(ALTS(List(ALTS(List("ab","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("ab","a")), "c", "ab")), "ab")

lexing(ALTS(List(ALTS(List("ab","a","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("ab","a","a")), "c", "ab")), "ab")

lexing(ALTS(List(ALTS(List("a","ab","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("a","ab","a")), "c", "ab")), "ab")

lexing(ALTS(List(ALTS(List("b","a","ab")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("b","a","ab")), "c", "ab")), "ab")


lexing_simp(ALTS(List("ba", "c", "ab")), "ab")

lexing(ALTS(List("a", "ab", "a")), "ab")
lexing_simp(ALTS(List("a", "ab", "a")), "ab")

lexing(STAR("a" | "aa"), "aa")
lexing_simp(STAR("a" | "aa"), "aa")




def enum(n: Int, s: String) : Set[Rexp] = n match {
  case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR)
  case n => {
    val rs = enum(n - 1, s)
    rs ++
    (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
    (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
    (for (r1 <- rs) yield STAR(r1))
  }
}

def strs(n: Int, cs: String) : Set[String] = {
  if (n == 0) Set("")
  else {
    val ss = strs(n - 1, cs)
    ss ++
    (for (s <- ss; c <- cs.toList) yield c + s)
  }
}

import scala.util.Try

def tests(n: Int, m: Int, s: String) = {
  val rs = enum(n, s)
  val ss = strs(m, s)
  println(s"cases generated: ${rs.size} regexes and ${ss.size} strings")
  for (r1 <- rs.par; s1 <- ss.par) yield {
    val res1 = Try(Some(lexing(r1, s1))).getOrElse(None)
    val res2 = Try(Some(lexing_simp(r1, s1))).getOrElse(None)
    if (res1 != res2) println(s"Disagree on ${r1} and ${s1}")
    if (res1 != res2) Some((r1, s1)) else None
  }
}

println("Testing")
println(tests(2,7,"abc"))