// Version with simplification during derivatives;
// this keeps the regular expressions small, which
// is good for run-time
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class NTIMES(r: Rexp, n: Int) extends Rexp
// string of a regular expressions - for testing purposes
def string(r: Rexp) : String = r match {
case ZERO => "0"
case ONE => "1"
case CHAR(c) => c.toString
case ALT(r1, r2) => s"(${string(r1)} + ${string(r2)})"
case SEQ(CHAR(c), CHAR(d)) => s"${c}${d}"
case SEQ(ONE, CHAR(c)) => s"1${c}"
case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
case STAR(r) => s"(${string(r)})*"
case NTIMES(r, n) => s"(${string(r)}){${n}}"
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case NTIMES(r, _) => 1 + size(r)
}
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case NTIMES(r, i) => if (i == 0) true else nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
case NTIMES(r, i) =>
if (i == 0) ZERO else SEQ(der(c, r), NTIMES(r, i - 1))
}
def simp(r: Rexp, seen: Set[Rexp]) : (Rexp, Set[Rexp]) = r match {
case ALT(r1, r2) => {
val (r1s, seen1) = simp(r1, seen)
val (r2s, seen2) = simp(r2, seen1)
(r1s, r2s) match {
case (ZERO, r2s) => (r2s, seen2)
case (r1s, ZERO) => (r1s, seen2)
case (r1s, r2s) => (ALT(r1s, r2s), seen2)
}
}
case SEQ(r1, r2) => {
val (r1s, _) = simp(r1, Set())
val (r2s, _) = simp(r2, Set())
if (seen.contains(SEQ(r1s, r2s))) (ZERO, seen)
else (r1s, r2s) match {
case (ZERO, _) => (ZERO, seen)
case (_, ZERO) => (ZERO, seen)
case (ONE, r2s) => (r2s, seen + r2s)
case (r1s, ONE) => (r1s, seen + r1s)
case (r1s, r2s) => (SEQ(r1s, r2s), seen + SEQ(r1s, r2s))
}
}
case r => if (seen.contains(r)) (ZERO, seen) else (r, seen + r)
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r), Set())._1)
}
// main matcher function
def matcher(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r))
//one or zero
def OPT(r: Rexp) = ALT(r, ONE)
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
// star example
val Tstar = STAR(STAR(STAR(CHAR('a'))))
string(ders("".toList, Tstar))
size(ders("".toList, Tstar)) // 4
string(ders("a".toList, Tstar))
size(ders("a".toList, Tstar)) // 11
string(ders("aa".toList, Tstar))
size(ders("aa".toList, Tstar)) // 11
string(ders("aaa".toList, Tstar))
size(ders("aaa".toList, Tstar)) // 11
string(ders("aaaa".toList, Tstar))
size(ders("aaaa".toList, Tstar)) // 11
string(ders("aaaa".toList, Tstar))
size(ders("aaaaa".toList, Tstar)) // 11
string(ders("aaaab".toList, Tstar))
size(ders("aaaaab".toList, Tstar)) // 1
// test: ("a" | "aa")*
val EVIL3 = STAR(ALT(CHAR('a'), SEQ(CHAR('a'), CHAR('a'))))
for (i <- 1 to 100 by 1) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL3, "a" * i))) +
" size: " + size(ders(("a" * i).toList, EVIL3)))
}
println("start " + string(EVIL3) + " " + size(EVIL3))
val t1 = der('a', EVIL3)
println(string(t1) + " " + size(t1))
val t1s = simp(t1, Set())._1
println("simplified " + string(t1s) + " " + size(t1s))
val t2 = der('a', t1s)
println(string(t2) + " " + size(t2))
val t2s = simp(t2, Set())._1
println("simplified " + string(t2s) + " " + size(t2s))
val t3 = der('a', t2s)
println(string(t3) + " " + size(t3))
val t3s = simp(t3, Set())._1
println("simplified " + string(t3s) + " " + size(t3s))
val t4 = der('a', t3s)
val t4s = simp(t4, Set())._1
println(string(t4) + " " + size(t4))
println("simplified " + string(t4s) + " " + size(t4s))
// Test Cases
//evil regular expressions: (a?){n} a{n} and (a*)* b
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
//test: (a?{n}) (a{n})
for (i <- 1 to 8001 by 1000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i))))
}
for (i <- 1 to 8001 by 1000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i))))
}
//test: (a*)* b
for (i <- 1 to 6000001 by 500000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i))))
}
for (i <- 1 to 6000001 by 500000) {
println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i))))
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case NTIMES(r, _) => 1 + size(r)
}
// now the size of the derivatives grows
// much, much slower
size(ders("".toList, EVIL2)) // 5
size(ders("a".toList, EVIL2)) // 8
size(ders("aa".toList, EVIL2)) // 8
size(ders("aaa".toList, EVIL2)) // 8
size(ders("aaaa".toList, EVIL2)) // 8
size(ders("aaaaa".toList, EVIL2)) // 8
// Examples from the Sulzmann paper
val sulzmann = STAR(ALT(ALT(CHAR('a'), CHAR('b')), SEQ(CHAR('a'), CHAR('b'))))
for (i <- 1 to 4501 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, matcher(sulzmann, "a" * i))))
}
for (i <- 1 to 4501 by 500) {
println(i + ": " + "%.5f".format(time_needed(1, matcher(sulzmann, "ab" * i))))
}
size(ders("".toList, EVIL2)) // 5
size(ders("a".toList, EVIL2)) // 8
size(ders("aa".toList, EVIL2)) // 8
size(ders("aaa".toList, EVIL2)) // 8
size(ders("aaaa".toList, EVIL2)) // 8
size(ders("aaaaa".toList, EVIL2)) // 8
(((1 + 1a) ~ ((a + aa))*) + (((0 + 1) ~ ((a + aa))*) + ((1 + 1a) ~ ((a + aa))*)))