progs/funt.scala
author Christian Urban <urbanc@in.tum.de>
Tue, 03 Dec 2019 01:21:50 +0000
changeset 702 39e21a33ffb0
parent 695 484b74bc057e
permissions -rw-r--r--
updated

// A Small Compiler for a Simple Functional Language
// (includes a lexer and a parser)

import scala.language.implicitConversions    
import scala.language.reflectiveCalls 

abstract class Rexp 
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
case class STAR(r: Rexp) extends Rexp 
case class RECD(x: String, r: Rexp) extends Rexp
  
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
   
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
  case Nil => ONE
  case c::Nil => CHAR(c)
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = 
  charlist2rexp(s.toList)

implicit def RexpOps(r: Rexp) = new {
  def | (s: Rexp) = ALT(r, s)
  def % = STAR(r)
  def ~ (s: Rexp) = SEQ(r, s)
}

implicit def stringOps(s: String) = new {
  def | (r: Rexp) = ALT(s, r)
  def | (r: String) = ALT(s, r)
  def % = STAR(s)
  def ~ (r: Rexp) = SEQ(s, r)
  def ~ (r: String) = SEQ(s, r)
  def $ (r: Rexp) = RECD(s, r)
}

def nullable (r: Rexp) : Boolean = r match {
  case ZERO => false
  case ONE => true
  case CHAR(_) => false
  case ALT(r1, r2) => nullable(r1) || nullable(r2)
  case SEQ(r1, r2) => nullable(r1) && nullable(r2)
  case STAR(_) => true
  case RECD(_, r1) => nullable(r1)
}

def der (c: Char, r: Rexp) : Rexp = r match {
  case ZERO => ZERO
  case ONE => ZERO
  case CHAR(d) => if (c == d) ONE else ZERO
  case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
  case SEQ(r1, r2) => 
    if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
    else SEQ(der(c, r1), r2)
  case STAR(r) => SEQ(der(c, r), STAR(r))
  case RECD(_, r1) => der(c, r1)
}


// extracts a string from value
def flatten(v: Val) : String = v match {
  case Empty => ""
  case Chr(c) => c.toString
  case Left(v) => flatten(v)
  case Right(v) => flatten(v)
  case Sequ(v1, v2) => flatten(v1) + flatten(v2)
  case Stars(vs) => vs.map(flatten).mkString
  case Rec(_, v) => flatten(v)
}

// extracts an environment from a value;
// used for tokenise a string
def env(v: Val) : List[(String, String)] = v match {
  case Empty => Nil
  case Chr(c) => Nil
  case Left(v) => env(v)
  case Right(v) => env(v)
  case Sequ(v1, v2) => env(v1) ::: env(v2)
  case Stars(vs) => vs.flatMap(env)
  case Rec(x, v) => (x, flatten(v))::env(v)
}

// The Injection Part of the lexer

def mkeps(r: Rexp) : Val = r match {
  case ONE => Empty
  case ALT(r1, r2) => 
    if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
  case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
  case STAR(r) => Stars(Nil)
  case RECD(x, r) => Rec(x, mkeps(r))
}

def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
  case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
  case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
  case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
  case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
  case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1))
  case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2))
  case (CHAR(d), Empty) => Chr(c) 
  case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
  case _ => { println ("Injection error") ; sys.exit(-1) } 
}

// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
  case Right(v) => Right(f2(v))
  case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
  case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = 
  (v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = 
  (v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
  case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")

def simp(r: Rexp): (Rexp, Val => Val) = r match {
  case ALT(r1, r2) => {
    val (r1s, f1s) = simp(r1)
    val (r2s, f2s) = simp(r2)
    (r1s, r2s) match {
      case (ZERO, _) => (r2s, F_RIGHT(f2s))
      case (_, ZERO) => (r1s, F_LEFT(f1s))
      case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
                else (ALT (r1s, r2s), F_ALT(f1s, f2s)) 
    }
  }
  case SEQ(r1, r2) => {
    val (r1s, f1s) = simp(r1)
    val (r2s, f2s) = simp(r2)
    (r1s, r2s) match {
      case (ZERO, _) => (ZERO, F_ERROR)
      case (_, ZERO) => (ZERO, F_ERROR)
      case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
      case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
      case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
    }
  }
  case RECD(x, r1) => {
    val (r1s, f1s) = simp(r1)
    (RECD(x, r1s), F_RECD(f1s))
  }
  case r => (r, F_ID)
}

// lexing functions including simplification
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
  case Nil => if (nullable(r)) mkeps(r) else { println ("Lexing Error") ; sys.exit(-1) } 
  case c::cs => {
    val (r_simp, f_simp) = simp(der(c, r))
    inj(r, c, f_simp(lex_simp(r_simp, cs)))
  }
}

def lexing_simp(r: Rexp, s: String) = env(lex_simp(r, s.toList))


// The Lexing Rules for the Fun Language

def PLUS(r: Rexp) = r ~ r.%

val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | 
          "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | 
          "w" | "x" | "y" | "z" | "T" | "_"
val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val ID = SYM ~ (SYM | DIGIT).% 
val NUM = PLUS(DIGIT)
val KEYWORD : Rexp = "if" | "then" | "else" | "write" | "def"
val SEMI: Rexp = ";"
val OP: Rexp = "=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
val WHITESPACE = PLUS(" " | "\n" | "\t")
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val COMMA: Rexp = ","
val ALL = SYM | DIGIT | OP | " " | ":" | ";" | "\"" | "=" | "," | "(" | ")"
val ALL2 = ALL | "\n"
val COMMENT = ("/*" ~ ALL2.% ~ "*/") | ("//" ~ ALL.% ~ "\n")


val WHILE_REGS = (("k" $ KEYWORD) | 
                  ("i" $ ID) | 
                  ("o" $ OP) | 
                  ("n" $ NUM) | 
                  ("s" $ SEMI) | 
                  ("c" $ COMMA) |
                  ("pl" $ LPAREN) |
                  ("pr" $ RPAREN) |
                  ("w" $ (WHITESPACE | COMMENT))).%



// The tokens for the Fun language

abstract class Token
case object T_SEMI extends Token
case object T_COMMA extends Token
case object T_LPAREN extends Token
case object T_RPAREN extends Token
case class T_ID(s: String) extends Token
case class T_OP(s: String) extends Token
case class T_NUM(n: Int) extends Token
case class T_KWD(s: String) extends Token

val token : PartialFunction[(String, String), Token] = {
  case ("k", s) => T_KWD(s)
  case ("i", s) => T_ID(s)
  case ("o", s) => T_OP(s)
  case ("n", s) => T_NUM(s.toInt)
  case ("s", _) => T_SEMI
  case ("c", _) => T_COMMA
  case ("pl", _) => T_LPAREN
  case ("pr", _) => T_RPAREN
}


def tokenise(s: String) : List[Token] = 
  lexing_simp(WHILE_REGS, s).collect(token)



// Parser combinators
abstract class Parser[I, T](implicit ev: I => Seq[_]) {
  def parse(ts: I): Set[(T, I)]

  def parse_all(ts: I) : Set[T] =
    for ((head, tail) <- parse(ts); if (tail.isEmpty)) yield head

  def parse_single(ts: I) : T = parse_all(ts).toList match {
    case List(t) => t
    case _ => { println ("Parse Error\n") ; sys.exit(-1) }
  }
}

// convenience for matching later on
case class ~[+A, +B](_1: A, _2: B)


class SeqParser[I, T, S](p: => Parser[I, T], 
                         q: => Parser[I, S])(implicit ev: I => Seq[_]) extends Parser[I, ~[T, S]] {
  def parse(sb: I) = 
    for ((head1, tail1) <- p.parse(sb); 
         (head2, tail2) <- q.parse(tail1)) yield (new ~(head1, head2), tail2)
}

class AltParser[I, T](p: => Parser[I, T], 
                      q: => Parser[I, T])(implicit ev: I => Seq[_]) extends Parser[I, T] {
  def parse(sb: I) = p.parse(sb) ++ q.parse(sb)   
}

class FunParser[I, T, S](p: => Parser[I, T], 
                         f: T => S)(implicit ev: I => Seq[_]) extends Parser[I, S] {
  def parse(sb: I) = 
    for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}

implicit def ParserOps[I, T](p: Parser[I, T])(implicit ev: I => Seq[_]) = new {
  def || (q : => Parser[I, T]) = new AltParser[I, T](p, q)
  def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
  def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
}

def ListParser[I, T, S](p: => Parser[I, T], 
                        q: => Parser[I, S])(implicit ev: I => Seq[_]): Parser[I, List[T]] = {
  (p ~ q ~ ListParser(p, q)) ==> { case x ~ _ ~ z => x :: z : List[T] } ||
  (p ==> ((s) => List(s)))
}

case class TokParser(tok: Token) extends Parser[List[Token], Token] {
  def parse(ts: List[Token]) = ts match {
    case t::ts if (t == tok) => Set((t, ts)) 
    case _ => Set ()
  }
}

implicit def token2tparser(t: Token) = TokParser(t)

implicit def TokOps(t: Token) = new {
  def || (q : => Parser[List[Token], Token]) = new AltParser[List[Token], Token](t, q)
  def ==>[S] (f: => Token => S) = new FunParser[List[Token], Token, S](t, f)
  def ~[S](q : => Parser[List[Token], S]) = new SeqParser[List[Token], Token, S](t, q)
}

case object NumParser extends Parser[List[Token], Int] {
  def parse(ts: List[Token]) = ts match {
    case T_NUM(n)::ts => Set((n, ts)) 
    case _ => Set ()
  }
}

case object IdParser extends Parser[List[Token], String] {
  def parse(ts: List[Token]) = ts match {
    case T_ID(s)::ts => Set((s, ts)) 
    case _ => Set ()
  }
}



// Abstract syntax trees for Fun
abstract class Exp
abstract class BExp 
abstract class Decl

case class Def(name: String, args: List[String], body: Exp) extends Decl
case class Main(e: Exp) extends Decl

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp



// Grammar Rules for Fun

// arithmetic expressions
lazy val Exp: Parser[List[Token], Exp] = 
  (T_KWD("if") ~ BExp ~ T_KWD("then") ~ Exp ~ T_KWD("else") ~ Exp) ==>
    { case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w): Exp } ||
  (M ~ T_SEMI ~ Exp) ==> { case x ~ _ ~ z => Sequence(x, z): Exp } || M
lazy val M: Parser[List[Token], Exp] =
  (T_KWD("write") ~ L) ==> { case _ ~ y => Write(y): Exp } || L
lazy val L: Parser[List[Token], Exp] = 
  (T ~ T_OP("+") ~ Exp) ==> { case x ~ _ ~ z => Aop("+", x, z): Exp } ||
  (T ~ T_OP("-") ~ Exp) ==> { case x ~ _ ~ z => Aop("-", x, z): Exp } || T  
lazy val T: Parser[List[Token], Exp] = 
  (F ~ T_OP("*") ~ T) ==> { case x ~ _ ~ z => Aop("*", x, z): Exp } || 
  (F ~ T_OP("/") ~ T) ==> { case x ~ _ ~ z => Aop("/", x, z): Exp } || 
  (F ~ T_OP("%") ~ T) ==> { case x ~ _ ~ z => Aop("%", x, z): Exp } || F
lazy val F: Parser[List[Token], Exp] = 
  (IdParser ~ T_LPAREN ~ ListParser(Exp, T_COMMA) ~ T_RPAREN) ==> 
    { case x ~ _ ~ z ~ _ => Call(x, z): Exp } ||
  (T_LPAREN ~ Exp ~ T_RPAREN) ==> { case _ ~ y ~ _ => y: Exp } || 
  IdParser ==> { case x => Var(x): Exp } || 
  NumParser ==> { case x => Num(x): Exp }

// boolean expressions
lazy val BExp: Parser[List[Token], BExp] = 
  (Exp ~ T_OP("==") ~ Exp) ==> { case x ~ _ ~ z => Bop("==", x, z): BExp } || 
  (Exp ~ T_OP("!=") ~ Exp) ==> { case x ~ _ ~ z => Bop("!=", x, z): BExp } || 
  (Exp ~ T_OP("<") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", x, z): BExp } || 
  (Exp ~ T_OP(">") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", z, x): BExp } || 
  (Exp ~ T_OP("<=") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", x, z): BExp } || 
  (Exp ~ T_OP("=>") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", z, x): BExp }  

lazy val Defn: Parser[List[Token], Decl] =
   (T_KWD("def") ~ IdParser ~ T_LPAREN ~ ListParser(IdParser, T_COMMA) ~ T_RPAREN ~ T_OP("=") ~ Exp) ==>
     { case x ~ y ~ z ~ w ~ u ~ v ~ r => Def(y, w, r): Decl }

lazy val Prog: Parser[List[Token], List[Decl]] =
  (Defn ~ T_SEMI ~ Prog) ==> { case x ~ _ ~ z => x :: z : List[Decl] } ||
  (Exp ==> ((s) => List(Main(s)) : List[Decl]))


// compiler - built-in functions 
// copied from http://www.ceng.metu.edu.tr/courses/ceng444/link/jvm-cpm.html
//

val library = """
.class public XXX.XXX
.super java/lang/Object

.method public static write(I)V 
        .limit locals 1 
        .limit stack 2 
        getstatic java/lang/System/out Ljava/io/PrintStream; 
        iload 0
        invokevirtual java/io/PrintStream/println(I)V 
        return 
.end method

"""

// calculating the maximal needed stack size
def max_stack_exp(e: Exp): Int = e match {
  case Call(_, args) => args.map(max_stack_exp).sum
  case If(a, e1, e2) => max_stack_bexp(a) + (List(max_stack_exp(e1), max_stack_exp(e2)).max)
  case Write(e) => max_stack_exp(e) + 1
  case Var(_) => 1
  case Num(_) => 1
  case Aop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
  case Sequence(e1, e2) => List(max_stack_exp(e1), max_stack_exp(e2)).max
}
def max_stack_bexp(e: BExp): Int = e match {
  case Bop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
}


// for generating new labels
var counter = -1

def Fresh(x: String) = {
  counter += 1
  x ++ "_" ++ counter.toString()
}

// convenient string interpolations 
// for instructions, labels and methods
import scala.language.implicitConversions
import scala.language.reflectiveCalls

implicit def sring_inters(sc: StringContext) = new {
    def i(args: Any*): String = "   " ++ sc.s(args:_*) ++ "\n"
    def l(args: Any*): String = sc.s(args:_*) ++ ":\n"
    def m(args: Any*): String = sc.s(args:_*) ++ "\n"
}


type Env = Map[String, Int]


def compile_expT(a: Exp, env : Env, name: String) : String = a match {
  case Num(i) => i"ldc $i"
  case Var(s) => i"iload ${env(s)}"
  case Aop("+", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"iadd"
  case Aop("-", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"isub"
  case Aop("*", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"imul"
  case Aop("/", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"idiv"
  case Aop("%", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"irem"
  case If(b, a1, a2) => {
    val if_else = Fresh("If_else")
    val if_end = Fresh("If_end")
    compile_bexpT(b, env, if_else) ++
    compile_expT(a1, env, name) ++
    i"goto $if_end" ++
    l"$if_else" ++
    compile_expT(a2, env, name) ++
    l"$if_end"
  }
  case Call(n, args) => if (name == n) { 
    val stores = args.zipWithIndex.map { case (x, y) => i"istore $y" } 
    args.map(a => compile_expT(a, env, "")).mkString ++
    stores.reverse.mkString ++ 
    i"goto ${n}_Start" 
  } else {
    val is = "I" * args.length
    args.map(a => compile_expT(a, env, "")).mkString ++
    i"invokestatic XXX/XXX/${n}(${is})I"
  }
  case Sequence(a1, a2) => {
    compile_expT(a1, env, "") ++ i"pop" ++ compile_expT(a2, env, name)
  }
  case Write(a1) => {
    compile_expT(a1, env, "") ++
    i"dup" ++
    i"invokestatic XXX/XXX/write(I)V"
  }
}

def compile_bexpT(b: BExp, env : Env, jmp: String) : String = b match {
  case Bop("==", a1, a2) => 
    compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpne $jmp"
  case Bop("!=", a1, a2) => 
    compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpeq $jmp"
  case Bop("<", a1, a2) => 
    compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpge $jmp"
  case Bop("<=", a1, a2) => 
    compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpgt $jmp"
}


def compile_decl(d: Decl) : String = d match {
  case Def(name, args, a) => { 
    val env = args.zipWithIndex.toMap
    val is = "I" * args.length
    m".method public static $name($is)I" ++
    m".limit locals ${args.length}" ++
    m".limit stack ${1 + max_stack_exp(a)}" ++
    l"${name}_Start" ++   
    compile_expT(a, env, name) ++
    i"ireturn" ++ 
    m".end method\n"
  }
  case Main(a) => {
    m".method public static main([Ljava/lang/String;)V" ++
    m".limit locals 200" ++
    m".limit stack 200" ++
    compile_expT(a, Map(), "") ++
    i"invokestatic XXX/XXX/write(I)V" ++
    i"return\n" ++
    m".end method\n"
  }
}

// main compiler functions

def time_needed[T](i: Int, code: => T) = {
  val start = System.nanoTime()
  for (j <- 1 to i) code
  val end = System.nanoTime()
  (end - start)/(i * 1.0e9)
}

def compile(class_name: String, input: String) : String = {
  val tks = tokenise(input)
  val ast = Prog.parse_single(tks)
  val instructions = ast.map(compile_decl).mkString
  (library + instructions).replaceAllLiterally("XXX", class_name)
}

def compile_file(class_name: String) = {
  val input = io.Source.fromFile(s"${class_name}.fun").mkString
  val output = compile(class_name, input)
  scala.tools.nsc.io.File(s"${class_name}.j").writeAll(output)
}

import scala.sys.process._

def compile_run(class_name: String) : Unit = {
  compile_file(class_name)
  (s"java -jar jvm/jasmin-2.4/jasmin.jar ${class_name}.j").!!
  println("Time: " + time_needed(2, (s"java ${class_name}/${class_name}").!))
}


//examples
compile_run("defs")
compile_run("fact")