import scala.language.implicitConversions
import scala.language.reflectiveCalls
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
// ALT is now an abbreviation
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
// proj is now used instead for Left and Right
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Proj(n: Int, v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(s: String, v: Val) extends Val
// for manipulating projections
def IncProj(m: Int, v: Val) = v match {
case Proj(n, v) => Proj(n + m, v)
}
def DecProj(m: Int, v: Val) = v match {
case Proj(n, v) => Proj(n - m, v)
}
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
}
// string of a regular expression - for testing purposes
def string(r: Rexp) : String = r match {
case ZERO => "0"
case ONE => "1"
case CHAR(c) => c.toString
case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
case SEQ(CHAR(c), CHAR(d)) => s"${c}${d}"
case SEQ(ONE, CHAR(c)) => s"1${c}"
case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
case STAR(r) => s"(${string(r)})*"
}
// size of a regular expression - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALTS(rs) => 1 + rs.map(size).sum
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
}
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALTS(rs) => ALTS(rs.map(der(c, _)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// extracts a string from value
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Proj(_, v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) ++ flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
}
// mkeps
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(r1::rs) =>
if (nullable(r1)) Proj(0, mkeps(r1))
else IncProj(1, mkeps(ALTS(rs)))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
}
// injection
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Proj(0, Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Proj(1, v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(rs), Proj(n, v1)) => Proj(n, inj(rs(n), c, v1))
case (CHAR(d), Empty) => Chr(c)
}
// main lexing function (produces a value)
// - does not simplify
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
//println(s"Size of the last regex: ${size(r)}")
if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
}
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
lexing("a" | ZERO, "a")
lexing(ZERO | "a", "a")
lexing(("ab" | "a") ~ ("b" | ONE), "ab")
// removing duplicate regular expressions
val unit = (ZERO, F_ERROR(_))
def dups2(xs: List[(Rexp, Val => Val)],
acc: List[(Rexp, Val => Val)] = Nil) : List[(Rexp, Val => Val)] = xs match {
case Nil => acc
case (x, y)::xs =>
if (acc.map(_._1).contains(x)) dups2(xs, acc :+ unit)
else dups2(xs, acc :+ (x, y))
}
def dups(xs: List[(Rexp, Val => Val)]) : List[(Rexp, Val => Val)] = {
val out = dups2(xs)
//if (out != xs) {
// println()
// println(s"Input ${string(ALTS(xs.map(_._1)))}")
// println(s"Ouput ${string(ALTS(out.map(_._1)))}")
//}
out
}
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_ERROR(v: Val): Val = throw new Exception("error")
def F_PRINT(v: Val): Val = {
println(s"value is ${v}")
throw new Exception("caught error")
}
def flats(rs: List[Rexp], seen: Set[Rexp]) : (List[Rexp], Val => Val) = {
//println(s"I am flats: ${string(ALTS(rs))}")
//println(s"The size of seen is ${seen.size}, ${seen.map(string)}")
rs match {
case Nil => (Nil, F_ERROR)
case r::rs1 if seen.contains(simp(r)._1) => {
//println(s" I remove ${string(r)}")
val (rs2, f) = flats(rs1, seen)
(rs2, (v:Val) => IncProj(1, f(v)))
}
case ZERO::rs1 => {
val (rs2, f) = flats(rs1, seen)
(rs2, (v:Val) => IncProj(1, f(v)))
}
case ALTS(rs0)::rs1 => {
val (rss, f1) = flats(rs0, seen)
val (rs2, f2) = flats(rs1, rss.toSet ++ seen)
(rss:::rs2, (v:Val) => v match {
case Proj(n, vn) =>
if (n < rss.length) Proj(0, f1(Proj(n, vn)))
else IncProj(1, f2(Proj(n - rss.length, vn)))
})
}
case r1::rs2 => {
val (r1s, f1) = simp(r1)
val (rs3, f2) = flats(rs2, seen + r1s)
(r1s::rs3, (v:Val) => v match {
case Proj(0, vn) => Proj(0, f1(vn))
case Proj(n, vn) => IncProj(1, f2(Proj(n - 1, vn)))
})
}
}}
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(rs) => {
val (rs_s, fs_s) = flats(rs, Set())
rs_s match {
case Nil => (ZERO, F_ERROR)
case r::Nil => (r, (v:Val) => fs_s(Proj(0, v)))
case rs_sd => (ALTS(rs_sd), fs_s)
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case (ALTS(rs), r2s) => (ALTS(rs.map(SEQ(_, r2s))),
(v:Val) => v match {
case Proj(n, Sequ(v1, v2)) => Sequ(f1s(Proj(n, v1)), f2s(v2))
}
)
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case r => (r, F_ID)
}
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => {
//println(s"Size of the last regex: ${size(r)}")
//println(s"${string(r)}")
if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
}
case c::cs => {
val rd = der(c, r)
val (r_simp, f_simp) = simp(rd)
//println(s"BEFORE ${string(rd)}")
//println(s"AFTER ${string(r_simp)}")
val rec = lex_simp(r_simp, cs)
inj(r, c, f_simp(rec))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
lexing_simp("ab" | "aa", "ab")
lexing_simp("ab" | "aa", "aa")
lexing(STAR("a" | "aa"), "aaaaa")
lexing_simp(STAR("a" | "aa"), "aaaaa")
lexing(STAR("a" | "aa"), "aaaaaaaaaaa")
lexing_simp(STAR("a" | "aa"), "aaaaaaaaaaa")
lexing_simp(STAR("a" | "aa"), "a" * 2)
lexing_simp(STAR("a" | "aa"), "a" * 3)
lexing_simp(STAR("a" | "aa"), "a" * 4)
lexing_simp(STAR("a" | "aa"), "a" * 20)
lexing_simp(STAR("a" | "aa"), "a" * 2000)
lexing(ALTS(List("aa", "aa", "aa", "ab", "ab")), "ab")
lexing_simp(ALTS(List("aa", "aa", "aa", "ab", "ab")), "ab")
lexing(ALTS(List(("aa" | "ab" | "aa"), "aa", "ab", "ab")), "ab")
lexing_simp(ALTS(List(("aa" | "ab" | "aa"), "aa", "ab", "ab")), "ab")
lexing(ALTS(List(ZERO, ZERO, ONE, "aa", ZERO, "aa", "aa")), "aa")
lexing_simp(ALTS(List(ZERO, ZERO, ONE, "aa", ZERO, "aa", "aa")), "aa")
lexing_simp(ONE | ZERO, "")
lexing_simp(ZERO | ONE, "")
lexing("a" | ZERO, "a")
lexing_simp("a" | ZERO, "a")
lexing(ZERO | "a", "a")
lexing_simp(ZERO | "a", "a")
lexing(ALTS(List(ZERO, ZERO, ONE, "a", ZERO, "a")), "a")
lexing_simp(ALTS(List(ZERO, ZERO, ONE, "a", ZERO, "a")), "a")
lexing(ALTS(List("a")), "a")
lexing_simp(ALTS(List("a")), "a")
lexing_simp(("a" | ZERO) | ZERO, "a")
lexing_simp("a" | (ZERO | ZERO), "a")
lexing_simp(ZERO | ("a" | ZERO), "a")
lexing_simp("abc", "abc")
lexing_simp("abc" | ONE, "abc")
lexing(("a" | "ab") ~ ("b" | ""), "ab")
lexing_simp(("a" | "ab") ~ ("b" | ""), "ab")
lexing_simp(("ba" | "c" | "ab"), "ab")
lexing(ALTS(List(ALTS(Nil), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(Nil), "c", "ab")), "ab")
lexing(ALTS(List(ALTS("ab"::Nil), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS("ab"::Nil), "c", "ab")), "ab")
lexing(ALTS(List(ALTS(List("a","ab")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("a","ab")), "c", "ab")), "ab")
lexing(ALTS(List(ALTS(List("ab","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("ab","a")), "c", "ab")), "ab")
lexing(ALTS(List(ALTS(List("ab","a","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("ab","a","a")), "c", "ab")), "ab")
lexing(ALTS(List(ALTS(List("a","ab","a")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("a","ab","a")), "c", "ab")), "ab")
lexing(ALTS(List(ALTS(List("b","a","ab")), "c", "ab")), "ab")
lexing_simp(ALTS(List(ALTS(List("b","a","ab")), "c", "ab")), "ab")
lexing_simp(ALTS(List("ba", "c", "ab")), "ab")
lexing(ALTS(List("a", "ab", "a")), "ab")
lexing_simp(ALTS(List("a", "ab", "a")), "ab")
lexing(STAR("a" | "aa"), "aa")
lexing_simp(STAR("a" | "aa"), "aa")
def enum(n: Int, s: String) : Set[Rexp] = n match {
case 0 => Set(ZERO, ONE) ++ s.toSet.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs ++
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
(for (r1 <- rs) yield STAR(r1))
}
}
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
import scala.util.Try
def tests(n: Int, m: Int, s: String) = {
val rs = enum(n, s)
val ss = strs(m, s)
println(s"cases generated: ${rs.size} regexes and ${ss.size} strings")
for (r1 <- rs.par; s1 <- ss.par) yield {
val res1 = Try(Some(lexing(r1, s1))).getOrElse(None)
val res2 = Try(Some(lexing_simp(r1, s1))).getOrElse(None)
if (res1 != res2) println(s"Disagree on ${r1} and ${s1}")
if (res1 != res2) Some((r1, s1)) else None
}
}
println("Testing")
println(tests(2,7,"abc"))