\documentclass{article}
\usepackage{../style}
\usepackage{../grammar}
\usepackage{../graphics}
\begin{document}
\section*{Homework 7}
%\HEADER
\begin{enumerate}
\item Suppose the context-sensitive grammar
\begin{center}
\begin{tabular}{lcl}
$S$ & $::=$ & $bSAA\;|\; \epsilon$\\
$A$ & $::=$ & $a$\\
$bA$ & $::=$ & $Ab$\\
\end{tabular}
\end{center}
where $S$ is the starting symbol of the grammar.
Give a derivation of the string $"\!aaabaaabb"$.
What can you say about the number of as and bs in the
strings recognised by this grammar.
\solution{
S -> bSAA -> bbSAAAA ->
bbbSAAAAAA ->
bbbAAAAAA ->
bbAbAAAAA -> .. ->
bbAAAAAAb -> .. -> AAAbAAAbb -> .. -> aaabaaabb
}
\item Consider the following grammar
\begin{plstx}[margin=1cm]
: \meta{S\/} ::= \meta{N\/}\cdot \meta{P\/}\\
: \meta{P\/} ::= \meta{V\/}\cdot \meta{N\/}\\
: \meta{N\/} ::= \meta{N\/}\cdot \meta{N\/}\\
: \meta{N\/} ::= \meta{A\/}\cdot \meta{N\/}\\
: \meta{N\/} ::= \texttt{student} \mid \texttt{trainer} \mid \texttt{team} \mid \texttt{trains}\\
: \meta{V\/} ::= \texttt{trains} \mid \texttt{team}\\
: \meta{A\/} ::= \texttt{The} \mid \texttt{the}\\
\end{plstx}
where $S$ is the start symbol and $S$, $P$, $N$, $V$ and $A$ are non-terminals.
Using the CYK-algorithm, check whether or not the following string can be parsed
by the grammar:
\begin{center}
\texttt{The trainer trains the student team}
\end{center}
\solution{
\begin{center}
\begin{tikzpicture}[scale=0.7,line width=0.8mm]
\draw (-2,0) -- (4,0);
\draw (-2,1) -- (4,1);
\draw (-2,2) -- (3,2);
\draw (-2,3) -- (2,3);
\draw (-2,4) -- (1,4);
\draw (-2,5) -- (0,5);
\draw (-2,6) -- (-1,6);
\draw (0,0) -- (0, 5);
\draw (1,0) -- (1, 4);
\draw (2,0) -- (2, 3);
\draw (3,0) -- (3, 2);
\draw (4,0) -- (4, 1);
\draw (-1,0) -- (-1, 6);
\draw (-2,0) -- (-2, 6);
\draw (-1.5,-0.5) node {\footnotesize{}\texttt{The}};
\draw (-0.5,-1.0) node {\footnotesize{}\texttt{trainer}};
\draw ( 0.5,-0.5) node {\footnotesize{}\texttt{trains}};
\draw ( 1.5,-1.0) node {\footnotesize{}\texttt{the}};
\draw ( 2.5,-0.5) node {\footnotesize{}\texttt{student}};
\draw ( 3.5,-1.0) node {\footnotesize{}\texttt{team}};
\draw (-1.5,0.5) node {$A$};
\draw (-0.5,0.5) node {$N$};
\draw ( 0.5,0.5) node {$N,\!V$};
\draw ( 1.5,0.5) node {$A$};
\draw ( 2.5,0.5) node {$N$};
\draw ( 3.5,0.5) node {$N,\!V$};
\draw (-1.5,1.5) node {$N$};
\draw (-0.5,1.5) node {$N$};
\draw ( 0.5,1.5) node {$$};
\draw ( 1.5,1.5) node {$N$};
\draw ( 2.5,1.5) node {$N$};
\draw (-1.5,2.5) node {$N$};
\draw (-0.5,2.5) node {$ $};
\draw ( 0.5,2.5) node {$N,\!P$};
\draw ( 1.5,2.5) node {$N$};
\draw (-1.5,3.5) node {$$};
\draw (-0.5,3.5) node {$N,\!S$};
\draw ( 0.5,3.5) node {$N,\!P$};
\draw (-1.5,4.5) node {$N,\!S$};
\draw (-0.5,4.5) node {$N,\!S$};
\draw (-1.5,5.5) node {$N,\!S$};
\draw (-2.4, 5.5) node {$1$};
\draw (-2.4, 4.5) node {$2$};
\draw (-2.4, 3.5) node {$3$};
\draw (-2.4, 2.5) node {$4$};
\draw (-2.4, 1.5) node {$5$};
\draw (-2.4, 0.5) node {$6$};
\end{tikzpicture}
\end{center}
}
\item Transform the grammar
\begin{center}
\begin{tabular}{lcl}
$A$ & $::=$ & $0A1 \;|\; BB$\\
$B$ & $::=$ & $\epsilon \;|\; 2B$
\end{tabular}
\end{center}
\noindent
into Chomsky normal form.
\solution{
First one has to eliminate $\epsilon$. This means we obtain the rules:
\begin{center}
\begin{tabular}{lcl}
$A$ & $::=$ & $0A1 \;|\; 01 \;|\; BB \;|\; B$\\
$B$ & $::=$ & $2 \;|\; 2B$
\end{tabular}
\end{center}
Now we have to bring the rules into CNF form by adding additional
non-terminals, like $Z$, $O$, $T$, and splitting up the rules into ``twos'':
\begin{center}
\begin{tabular}{lcl}
$A$ & $::=$ & $ZC \;|\; ZO \;|\; BB \;|\; 2$\\
$B$ & $::=$ & $2 \;|\; TB$\\
$C$ & $::=$ & $AO$\\
$Z$ & $::=$ & $0$\\
$O$ & $::=$ & $1$\\
$T$ & $::=$ & $2$\\
\end{tabular}
\end{center}
}
\item Consider the following grammar $G$
\begin{center}
\begin{tabular}{l}
$S ::= \texttt{if0} \cdot E \cdot \texttt{then} \cdot S$\\
$S ::= \texttt{print} \cdot S$\\
$S ::= \texttt{begin} \cdot B\cdot \texttt{end}$\\
$B ::= S\cdot \texttt{;}$\\
$B ::= S\cdot \texttt{;} \cdot B$\\
$S ::= num$\\
$E ::= num$\\
$B ::= num$
\end{tabular}
\end{center}
where $S$ is the start symbol and $S$, $E$ and $B$ are
non-terminals.
Check each rule below and decide whether, when added to $G$,
the combined grammar is ambiguous. If yes, give a string that
has more than one parse tree.
\begin{center}
\begin{tabular}{rl}
(i) & $S ::= \texttt{if0} \cdot E\cdot \texttt{then} \cdot S\cdot \texttt{else} \cdot S$\\
(ii) & $B ::= B \cdot B$\\
(iii) & $E ::= ( \cdot E \cdot )$\\
(iv) & $E ::= E \cdot + \cdot E$
\end{tabular}
\end{center}
\solution{
(i) this is ambiguous -> it's an instance of the dangling else;
(ii) rules of the form $B ::= B \cdot B$ are always ambiguous $B \cdot B\cdot B$
(iii) this is fine
(iv) same as (ii) $E\cdot + \cdot E \cdot + \cdot E$
}
\item Suppose the string $``9-5+2''$. Give all ASTs that
the following two grammars generate for this string.
Grammar 1, where List is the starting symbol:
\begin{center}
\begin{tabular}{lcl}
$List$ & $::=$ & $List + Digit \mid List - Digit \mid Digit$\\
$Digit$ & $::=$ & $0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
\end{tabular}
\end{center}
Grammar 2, where String is the starting symbol:
\begin{center}
\begin{tabular}{@{}lcl@{}}
$String$ & $::=$ & $String + String \mid String - String \mid$\\
& & $0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
\end{tabular}
\end{center}
\solution{
The point is that Grammar 1 is un-ambiguous, while the second is ambiguous.
Grammar 1 parses the strings as (9 - 5) + 2. Grammar 2 is ambiguous and
there are two possibilities (9 - 5) + 2 and 9 - (5 + 2).
}
%\item {\bf (Optional)} The task is to match strings where the letters are in alphabetical order---for example,
%\texttt{abcfjz} would pass, but \texttt{acb} would not. Whitespace should be ignored---for example
%\texttt{ab c d} should pass. The point is to try to get the regular expression as short as possible!
%See:
%\begin{center}
%\url{http://callumacrae.github.com/regex-tuesday/challenge11.html}
%\end{center}
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
The| trainer trains the student A {N,S} => N
The trainer |trains the student N {N, P} => N S
The trainer trains |the student N N => N
The trainer trains the |student
trainer |trains the student team N o {N, P} => N, S
trainer trains| the student team N o N => N
trainer trains the |student team
trainer trains the student |team {N, P} o {N, V} => N
The| trainer trains the student team A o (N,S) => N
The trainer| trains the student team N o (N,P) => N, S
The trainer trains| the student team N o N => N
The trainer trains the| student team
The trainer trains the student| team (N,S) o (N,V) => N