\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\begin{document}
\section*{Homework 9}
\HEADER
\begin{enumerate}
\item Describe what is meant by \emph{eliminating tail
recursion}, when such an optimization can be applied and
why it is a benefit?
% \item It is true (I confirmed it) that
%
% \begin{center} if $\varnothing$ does not occur in $r$
% \;\;then\;\;$L(r) \not= \{\}$
% \end{center}
%
% \noindent
% holds, or equivalently
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $\varnothing$ occurs in $r$.
% \end{center}
%
% \noindent
% You can prove either version by induction on $r$. The best way to
% make more formal what is meant by `$\varnothing$ occurs in $r$', you can define
% the following function:
%
% \begin{center}
% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
% $occurs(\varnothing)$ & $\dn$ & $true$\\
% $occurs(\epsilon)$ & $\dn$ & $f\!alse$\\
% $occurs (c)$ & $\dn$ & $f\!alse$\\
% $occurs (r_1 + r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
% $occurs (r_1 \cdot r_2)$ & $\dn$ & $occurs(r_1) \vee occurs(r_2)$\\
% $occurs (r^*)$ & $\dn$ & $occurs(r)$ \\
% \end{tabular}
% \end{center}
%
% \noindent
% Now you can prove
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
% \end{center}
%
% \noindent
% The interesting cases are $r_1 + r_2$ and $r^*$.
% The other direction is not true, that is if $occurs(r)$ then $L(r) = \{\}$. A counter example
% is $\varnothing + a$: although $\varnothing$ occurs in this regular expression, the corresponding
% language is not empty. The obvious extension to include the not-regular expression, $\sim r$,
% also leads to an incorrect statement. Suppose we add the clause
%
% \begin{center}
% \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
% $occurs(\sim r)$ & $\dn$ & $occurs(r)$
% \end{tabular}
% \end{center}
%
% \noindent
% to the definition above, then it will not be true that
%
% \begin{center}
% $L(r) = \{\}$ \;\;implies\;\; $occurs(r)$.
% \end{center}
%
% \noindent
% Assume the alphabet contains just $a$ and $b$, find a counter example to this
% property.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: