\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\section*{Homework 2}
\begin{enumerate}
\item Give regular expressions for (a) decimal numbers and for (b) binary numbers.
(Hint: Observe that the empty string is not a number. Also observe that leading 0s
are normally not written.)
\item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and
$(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$.
\item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to
$a$ and $b$. Is $r$ nullable?
\item What is a regular language?
\item Prove that for all regular expressions $r$ we have
\begin{center}
$\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$
\end{center}
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: