abstract class Rexp
case object NULL extends Rexp
case object EMPTY extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case NULL => false
case EMPTY => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case NULL => NULL
case EMPTY => NULL
case CHAR(d) => if (c == d) EMPTY else NULL
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
}
// derivative w.r.t. a string (iterates der)
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
// main matcher function
def matcher(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r))
//example from the homework
//val r = STAR(ALT(SEQ(CHAR('a'), CHAR('b')), CHAR('b')))
//der('a', r)
//der('b', r)
//der('c', r)
//optional: one or zero times
def OPT(r: Rexp) = ALT(r, EMPTY)
//n-times
def NTIMES(r: Rexp, n: Int) : Rexp = n match {
case 0 => EMPTY
case 1 => r
case n => SEQ(r, NTIMES(r, n - 1))
}
// the evil regular expression a?{n} a{n}
def EVIL(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
//for measuring time
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
for (i <- 1 to 29) {
println(i + ": " + "%.5f".format(time_needed(1, matcher(EVIL(i), "a" * i))))
}