\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\section*{Homework 3}
\begin{enumerate}
\item What is a regular language?
\item Assume you have an alphabet consisting of the letters
$a$, $b$ and $c$ only. (1) Find a regular expression
that recognises the two strings $ab$ and $ac$. (2) Find
a regular expression that matches all strings
\emph{except} these two strings. Note, you can only use
regular expressions of the form
\begin{center} $r ::=
\varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\;
r_1 \cdot r_2 \;|\; r^*$
\end{center}
\item Define the function \textit{zeroable} which takes a
regular expression as argument and returns a boolean.
The function should satisfy the following property:
\begin{center}
$\textit{zeroable(r)} \;\text{if and only if}\; L(r) = \varnothing$
\end{center}
\item Define the tokens and regular expressions for a language
consisting of numbers, left-parenthesis $($,
right-parenthesis $)$, identifiers and the operations $+$,
$-$ and $*$. Can the following strings in this language
be lexed?
\begin{itemize}
\item $(a + 3) * b$
\item $)()++ -33$
\item $(a / 3) * 3$
\end{itemize}
In case they can, can you give the corresponding token
sequences.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: