\documentclass{article}+ −
\usepackage{charter}+ −
\usepackage{hyperref}+ −
\usepackage{amssymb}+ −
\usepackage{amsmath}+ −
+ −
\begin{document}+ −
+ −
\section*{Homework 2}+ −
+ −
\begin{enumerate}+ −
\item Review the first handout about sets of strings and read+ −
the second handout. Assuming the alphabet is $\{a, b\}$,+ −
decide which of the following equations are true in+ −
general for arbitrary languages $A$, $B$ and $C$:+ −
+ −
\begin{eqnarray}+ −
(A \cup B) @ C & =^? & A @ C \cup B @ C\nonumber\\+ −
A^* \cup B^* & =^? & (A \cup B)^*\nonumber\\+ −
A^* @ A^* & =^? & A^*\nonumber\\+ −
(A \cap B)@ C & =^? & (A@C) \cap (B@C)\nonumber+ −
\end{eqnarray}+ −
+ −
\noindent In case an equation is true, give an explanation;+ −
otherwise give a counter-example.+ −
+ −
\item What is the meaning of a regular expression? Give an+ −
inductive definition.+ −
+ −
\item Given the regular expressions $r_1 = \epsilon$ and $r_2+ −
= \varnothing$ and $r_3 = a$. How many strings can the+ −
regular expressions $r_1^*$, $r_2^*$ and $r_3^*$ each+ −
match?+ −
+ −
+ −
\item Give regular expressions for (a) decimal numbers and for+ −
(b) binary numbers. (Hint: Observe that the empty string+ −
is not a number. Also observe that leading 0s are+ −
normally not written.)+ −
+ −
\item Decide whether the following two regular expressions are+ −
equivalent $(\epsilon + a)^* \equiv^? a^*$ and $(a \cdot+ −
b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$.+ −
+ −
\item Given the regular expression $r = (a \cdot b + b)^*$.+ −
Compute what the derivative of $r$ is with respect to+ −
$a$, $b$ and $c$. Is $r$ nullable?+ −
+ −
\item Prove that for all regular expressions $r$ we have+ −
+ −
\begin{center} + −
$\textit{nullable}(r) \quad \text{if and only if} + −
\quad [] \in L(r)$ + −
\end{center}+ −
+ −
Write down clearly in each case what you need to prove and+ −
what are the assumptions. + −
+ −
\end{enumerate}+ −
+ −
\end{document}+ −
+ −
%%% Local Variables: + −
%%% mode: latex+ −
%%% TeX-master: t+ −
%%% End: + −