// regular expressions including NOT
abstract class Rexp
case object NULL extends Rexp
case object EMPTY extends Rexp
case object ALLC extends Rexp // recognises any character
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class NOT(r: Rexp) extends Rexp // negation of a regular expression
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case NULL => false
case EMPTY => true
case ALLC => false
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case NOT(r) => !(nullable(r))
}
// tests whether a regular expression
// cannot recognise more
def no_more (r: Rexp) : Boolean = r match {
case NULL => true
case EMPTY => false
case ALLC => false
case CHAR(_) => false
case ALT(r1, r2) => no_more(r1) && no_more(r2)
case SEQ(r1, r2) => if (nullable(r1)) (no_more(r1) && no_more(r2)) else no_more(r1)
case STAR(_) => false
case NOT(r) => !(no_more(r))
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case NULL => NULL
case EMPTY => NULL
case ALLC => EMPTY
case CHAR(d) => if (c == d) EMPTY else NULL
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case NOT(r) => NOT(der (c, r))
}
// regular expression for specifying
// ranges of characters
def Range(s : List[Char]) : Rexp = s match {
case Nil => NULL
case c::Nil => CHAR(c)
case c::s => ALT(CHAR(c), Range(s))
}
def RANGE(s: String) = Range(s.toList)
// one or more
def PLUS(r: Rexp) = SEQ(r, STAR(r))
// many alternatives
def Alts(rs: List[Rexp]) : Rexp = rs match {
case Nil => NULL
case r::Nil => r
case r::rs => ALT(r, Alts(rs))
}
def ALTS(rs: Rexp*) = Alts(rs.toList)
// repetitions
def Seqs(rs: List[Rexp]) : Rexp = rs match {
case Nil => NULL
case r::Nil => r
case r::rs => SEQ(r, Seqs(rs))
}
def SEQS(rs: Rexp*) = Seqs(rs.toList)
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]) : Rexp = s match {
case Nil => EMPTY
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
type Rule[T] = (Rexp, List[Char] => T)
case class Tokenizer[T](rules: List[Rule[T]], excl: List[T] = Nil) {
def munch(r: Rexp, action: List[Char] => T, s: List[Char], t: List[Char]) : Option[(List[Char], T)] =
s match {
case Nil if (nullable(r)) => Some(Nil, action(t))
case Nil => None
case c::s if (no_more(der (c, r)) && nullable(r)) => Some(c::s, action(t))
case c::s if (no_more(der (c, r))) => None
case c::s => munch(der (c, r), action, s, t ::: List(c))
}
def one_token(s: List[Char]) : Either[(List[Char], T), String] = {
val somes = rules.map { (r) => munch(r._1, r._2, s, Nil) }.flatten
if (somes == Nil) Right(s.mkString)
else Left(somes sortBy (_._1.length) head)
}
def tokenize(cs: List[Char]) : List[T] = cs match {
case Nil => Nil
case _ => one_token(cs) match {
case Left((rest, token)) => token :: tokenize(rest)
case Right(s) => { println("Cannot tokenize: \"" + s + "\""); Nil }
}
}
def fromString(s: String) : List[T] =
tokenize(s.toList).filterNot(excl.contains(_))
def fromFile(name: String) : List[T] =
fromString(io.Source.fromFile(name).mkString)
}
// parser combinators with input type I and return type T
abstract class Parser[I <% Seq[_], T] {
def parse(ts: I): Set[(T, I)]
def parse_all(ts: I) : Set[T] =
for ((head, tail) <- parse(ts); if (tail.isEmpty)) yield head
def parse_single(ts: I) : T = parse_all(ts).toList match {
case t::Nil => t
case _ => { println ("Parse Error") ; sys.exit(-1) }
}
def || (right : => Parser[I, T]) : Parser[I, T] = new AltParser(this, right)
def ==>[S] (f: => T => S) : Parser [I, S] = new FunParser(this, f)
def ~[S] (right : => Parser[I, S]) : Parser[I, (T, S)] = new SeqParser(this, right)
def ~>[S] (right : => Parser[I, S]) : Parser[I, S] = this ~ right ==> (_._2)
def <~[S] (right : => Parser[I, S]) : Parser[I, T] = this ~ right ==> (_._1)
}
class SeqParser[I <% Seq[_], T, S](p: => Parser[I, T], q: => Parser[I, S]) extends Parser[I, (T, S)] {
def parse(sb: I) =
for ((head1, tail1) <- p.parse(sb);
(head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
}
class AltParser[I <% Seq[_], T](p: => Parser[I, T], q: => Parser[I, T]) extends Parser[I, T] {
def parse(sb: I) = p.parse(sb) ++ q.parse(sb)
}
class FunParser[I <% Seq[_], T, S](p: => Parser[I, T], f: T => S) extends Parser[I, S] {
def parse(sb: I) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}
// A parser and evaluator for teh while language
//
//:load matcher.scala
//:load parser3.scala
// some regular expressions
val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_")
val DIGIT = RANGE("0123456789")
val ID = SEQ(SYM, STAR(ALT(SYM, DIGIT)))
val NUM = PLUS(DIGIT)
val KEYWORD = ALTS("skip", "while", "do", "if", "then", "else", "true", "false", "write")
val SEMI: Rexp = ";"
val OP: Rexp = ALTS(":=", "=", "-", "+", "*", "!=", "<", ">")
val WHITESPACE = PLUS(RANGE(" \n"))
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
val COMMENT = SEQS("/*", NOT(SEQS(STAR(ALLC), "*/", STAR(ALLC))), "*/")
// tokens for classifying the strings that have been recognised
abstract class Token
case object T_WHITESPACE extends Token
case object T_COMMENT extends Token
case object T_SEMI extends Token
case object T_LPAREN extends Token
case object T_RPAREN extends Token
case object T_BEGIN extends Token
case object T_END extends Token
case class T_ID(s: String) extends Token
case class T_OP(s: String) extends Token
case class T_NUM(s: String) extends Token
case class T_KWD(s: String) extends Token
val lexing_rules: List[Rule[Token]] =
List((KEYWORD, (s) => T_KWD(s.mkString)),
(ID, (s) => T_ID(s.mkString)),
(OP, (s) => T_OP(s.mkString)),
(NUM, (s) => T_NUM(s.mkString)),
(SEMI, (s) => T_SEMI),
(LPAREN, (s) => T_LPAREN),
(RPAREN, (s) => T_RPAREN),
(BEGIN, (s) => T_BEGIN),
(END, (s) => T_END),
(WHITESPACE, (s) => T_WHITESPACE),
(COMMENT, (s) => T_COMMENT))
// the tokenizer
val Tok = Tokenizer(lexing_rules, List(T_WHITESPACE, T_COMMENT))
// the abstract syntax trees
abstract class Stmt
abstract class AExp
abstract class BExp
type Block = List[Stmt]
case object Skip extends Stmt
case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
case class While(b: BExp, bl: Block) extends Stmt
case class Assign(s: String, a: AExp) extends Stmt
case class Write(s: String) extends Stmt
case class Var(s: String) extends AExp
case class Num(i: Int) extends AExp
case class Aop(o: String, a1: AExp, a2: AExp) extends AExp
case object True extends BExp
case object False extends BExp
case class Relop(o: String, a1: AExp, a2: AExp) extends BExp
// atomic parsers
case class TokParser(tok: Token) extends Parser[List[Token], Token] {
def parse(ts: List[Token]) = ts match {
case t::ts if (t == tok) => Set((t, ts))
case _ => Set ()
}
}
implicit def token2tparser(t: Token) = TokParser(t)
case object NumParser extends Parser[List[Token], Int] {
def parse(ts: List[Token]) = ts match {
case T_NUM(s)::ts => Set((s.toInt, ts))
case _ => Set ()
}
}
case object IdParser extends Parser[List[Token], String] {
def parse(ts: List[Token]) = ts match {
case T_ID(s)::ts => Set((s, ts))
case _ => Set ()
}
}
// arithmetic expressions
lazy val AExp: Parser[List[Token], AExp] =
(T ~ T_OP("+") ~ AExp) ==> { case ((x, y), z) => Aop("+", x, z): AExp } ||
(T ~ T_OP("-") ~ AExp) ==> { case ((x, y), z) => Aop("-", x, z): AExp } || T
lazy val T: Parser[List[Token], AExp] =
(F ~ T_OP("*") ~ T) ==> { case ((x, y), z) => Aop("*", x, z): AExp } || F
lazy val F: Parser[List[Token], AExp] =
(T_LPAREN ~> AExp <~ T_RPAREN) ||
IdParser ==> Var ||
NumParser ==> Num
// boolean expressions
lazy val BExp: Parser[List[Token], BExp] =
(T_KWD("true") ==> ((_) => True: BExp)) ||
(T_KWD("false") ==> ((_) => False: BExp)) ||
(T_LPAREN ~> BExp <~ T_RPAREN) ||
(AExp ~ T_OP("=") ~ AExp) ==> { case ((x, y), z) => Relop("=", x, z): BExp } ||
(AExp ~ T_OP("!=") ~ AExp) ==> { case ((x, y), z) => Relop("!=", x, z): BExp } ||
(AExp ~ T_OP("<") ~ AExp) ==> { case ((x, y), z) => Relop("<", x, z): BExp } ||
(AExp ~ T_OP(">") ~ AExp) ==> { case ((x, y), z) => Relop("<", z, x): BExp }
lazy val Stmt: Parser[List[Token], Stmt] =
(T_KWD("skip") ==> ((_) => Skip: Stmt)) ||
(IdParser ~ T_OP(":=") ~ AExp) ==> { case ((x, y), z) => Assign(x, z): Stmt } ||
(T_KWD("if") ~ BExp ~ T_KWD("then") ~ Block ~ T_KWD("else") ~ Block) ==>
{ case (((((x,y),z),u),v),w) => If(y, u, w): Stmt } ||
(T_KWD("while") ~ BExp ~ T_KWD("do") ~ Block) ==> { case (((x, y), z), w) => While(y, w) } ||
(T_KWD("write") ~ IdParser) ==> { case (x, y) => Write(y) }
lazy val Stmts: Parser[List[Token], Block] =
(Stmt ~ T_SEMI ~ Stmts) ==> { case ((x, y), z) => x :: z : Block } ||
(Stmt ==> ((s) => List(s) : Block))
lazy val Block: Parser[List[Token], Block] =
(T_BEGIN ~> Stmts <~ T_END) ||
(Stmt ==> ((s) => List(s)))
// compiler
val beginning = """
.class public XXX.XXX
.super java/lang/Object
.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method
.method public static write(I)V
.limit locals 5
.limit stack 5
iload 0
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(I)V
return
.end method
.method public static main([Ljava/lang/String;)V
.limit locals 200
.limit stack 200
"""
val ending = """
return
.end method
"""
// for generating new labels
var counter = -1
def Fresh(x: String) = {
counter += 1
x ++ "_" ++ counter.toString()
}
type Env = Map[String, String]
type Instrs = List[String]
def compile_aexp(a: AExp, env : Env) : Instrs = a match {
case Num(i) => List("ldc " + i.toString + "\n")
case Var(s) => List("iload " + env(s) + "\n")
case Aop("+", a1, a2) => compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("iadd\n")
case Aop("-", a1, a2) => compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("isub\n")
case Aop("*", a1, a2) => compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("imul\n")
}
def compile_bexp(b: BExp, env : Env, jmp: String) : Instrs = b match {
case True => Nil
case False => List("goto " + jmp + "\n")
case Relop("=", a1, a2) =>
compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("if_icmpne " + jmp + "\n")
case Relop("!=", a1, a2) =>
compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("if_icmpeq " + jmp + "\n")
case Relop("<", a1, a2) =>
compile_aexp(a1, env) ++ compile_aexp(a2, env) ++ List("if_icmpge " + jmp + "\n")
}
def compile_stmt(s: Stmt, env: Env) : (Instrs, Env) = s match {
case Skip => (Nil, env)
case Assign(x, a) => {
val index = if (env.isDefinedAt(x)) env(x) else env.keys.size.toString
(compile_aexp(a, env) ++
List("istore " + index + "\n"), env + (x -> index))
}
case If(b, bl1, bl2) => {
val if_else = Fresh("If_else")
val if_end = Fresh("If_end")
val (instrs1, env1) = compile_bl(bl1, env)
val (instrs2, env2) = compile_bl(bl2, env1)
(compile_bexp(b, env, if_else) ++
instrs1 ++
List("goto " + if_end + "\n") ++
List("\n" + if_else + ":\n\n") ++
instrs2 ++
List("\n" + if_end + ":\n\n"), env2)
}
case While(b, bl) => {
val loop_begin = Fresh("Loop_begin")
val loop_end = Fresh("Loop_end")
val (instrs1, env1) = compile_bl(bl, env)
(List("\n" + loop_begin + ":\n\n") ++
compile_bexp(b, env, loop_end) ++
instrs1 ++
List("goto " + loop_begin + "\n") ++
List("\n" + loop_end + ":\n\n"), env1)
}
case Write(x) =>
(List("iload " + env(x) + "\n" + "invokestatic XXX/XXX/write(I)V\n"), env)
}
def compile_bl(bl: Block, env: Env) : (Instrs, Env) = bl match {
case Nil => (Nil, env)
case s::bl => {
val (instrs1, env1) = compile_stmt(s, env)
val (instrs2, env2) = compile_bl(bl, env1)
(instrs1 ++ instrs2, env2)
}
}
def compile(input: String) : String = {
val class_name = input.split('.')(0)
val tks = Tok.fromFile(input)
val ast = Stmts.parse_single(tks)
val instructions = compile_bl(ast, Map.empty)._1
(beginning ++ instructions.mkString ++ ending).replaceAllLiterally("XXX", class_name)
}
def compile_to(input: String, output: String) = {
val fw = new java.io.FileWriter(output)
fw.write(compile(input))
fw.close()
}
//
val tks = Tok.fromString("x := x + 1")
val ast = Stmt.parse_single(tks)
println(compile_stmt(ast, Map("x" -> "n"))._1.mkString)
//examples
compile_to("loops.while", "loops.j")
//compile_to("fib.while", "fib.j")
// testing cases for time measurements
/*
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
// for testing
import scala.sys.process._
val test_prog = """
start := XXX;
x := start;
y := start;
z := start;
while 0 < x do {
while 0 < y do {
while 0 < z do {
z := z - 1
};
z := start;
y := y - 1
};
y := start;
x := x - 1
};
write x;
write y;
write z
"""
def compile_test(n: Int) : Unit = {
val class_name = "LOOP"
val tks = Tok.fromString(test_prog.replaceAllLiterally("XXX", n.toString))
val ast = Stmts.parse_single(tks)
val instructions = compile_bl(ast, Map.empty)._1
val assembly = (beginning ++ instructions.mkString ++ ending).replaceAllLiterally("XXX", class_name)
val fw = new java.io.FileWriter(class_name + ".j")
fw.write(assembly)
fw.close()
val test = ("java -jar jvm/jasmin-2.4/jasmin.jar " + class_name + ".j").!!
println(n + " " + time_needed(2, ("java " + class_name + "/" + class_name).!!))
}
List(1, 5000, 10000, 50000, 100000, 250000, 500000, 750000, 1000000).map(compile_test(_))
// javabyte code assmbler
//
// java -jar jvm/jasmin-2.4/jasmin.jar loops.j
*/