// a class for deterministic finite automata,
// the type of states is kept polymorphic
case class Automaton[A](start: A, states: Set[A], delta: Map[(A, Char), A], fins: Set[A]) {
// the transition function lifted to list of characters
def deltas(q: A, cs: List[Char]) : Either[A, String] =
if (states.contains(q)) cs match {
case Nil => Left(q)
case c::cs =>
if (delta.isDefinedAt(q, c)) deltas(delta(q, c), cs)
else Right(q + " does not have a transition for " + c)
}
else Right(q + " is not a state of the automaton")
// wether a string is accepted by the automaton
def accepts(s: String) = deltas(start, s.toList) match {
case Left(q) => fins.contains(q)
case _ => false
}
}
// translating a regular expression into a finite
// automaton
abstract class Rexp
case object NULL extends Rexp
case object EMPTY extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
implicit def string2rexp(s : String) = {
def chars2rexp (cs: List[Char]) : Rexp = cs match {
case Nil => EMPTY
case c::Nil => CHAR(c)
case c::cs => SEQ(CHAR(c), chars2rexp(cs))
}
chars2rexp(s.toList)
}
def nullable (r: Rexp) : Boolean = r match {
case NULL => false
case EMPTY => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
}
def der (r: Rexp, c: Char) : Rexp = r match {
case NULL => NULL
case EMPTY => NULL
case CHAR(d) => if (c == d) EMPTY else NULL
case ALT(r1, r2) => ALT(der(r1, c), der(r2, c))
case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2, c))
else SEQ(der(r1, c), r2)
case STAR(r) => SEQ(der(r, c), STAR(r))
}
// Here we construct an automaton whose
// states are regular expressions
type State = Rexp
type States = Set[State]
type Transition = Map[(State, Char), State]
// we use as an alphabet all lowercase letters
val alphabet = "abcdefghijklmnopqrstuvwxyz".toSet
def goto(q: State, c: Char, qs: States, delta: Transition) : (States, Transition) = {
val q_der : State = der(q, c)
if (qs.contains(q_der)) (qs, delta + ((q, c) -> q))
else explore(qs + q_der, delta + ((q, c) -> q_der), q_der)
}
def explore (qs: States, delta: Transition, q: State) : (States, Transition) =
alphabet.foldRight[(States, Transition)] (qs, delta) ((c, qsd) => goto(q, c, qsd._1, qsd._2))
def mk_automaton (r: Rexp) : Automaton[Rexp] = {
val (qs, delta) = explore(Set(r), Map(), r);
val fins = for (q <- qs if nullable(q)) yield q;
Automaton[Rexp](r, qs, delta, fins)
}
val A = mk_automaton(ALT("ab","ac"))
A.start
A.states.toList.length
println(A.accepts("bd"))
println(A.accepts("ab"))
println(A.accepts("ac"))
val r1 = STAR(ALT("a","b"))
val r2 = SEQ("b","b")
val r3 = SEQ(SEQ(SEQ(r1, r2), r1), "a")
val B = mk_automaton(r3)
B.start
B.states.toList.length