\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{../slides}
\usepackage{../graphics}
\usepackage{../langs}
\usepackage{../data}
\hfuzz=220pt
\lstset{language=Scala,
style=mystyle,
numbersep=0pt,
numbers=none,
xleftmargin=0mm}
\pgfplotsset{compat=1.11}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
% beamer stuff
\renewcommand{\slidecaption}{AFL 02, King's College London}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Automata and \\[-2mm]
\LARGE Formal Languages (2)\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Office: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{@ {}c@ {}}
An Efficient Regular\\[-1mm]
Expression Matcher\end{tabular}}
\footnotesize
\begin{center}
\begin{tabular}{@{}cc@{}}
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,5,...,30},
xmax=30,
ymax=35,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=4.5cm,
height=4.5cm,
legend entries={Python,Ruby},
legend pos=north west,
legend cell align=left
]
\addplot[blue,mark=*, mark options={fill=white}]
table {re-python.data};
\addplot[brown,mark=pentagon*, mark options={fill=white}]
table {re-ruby.data};
\end{axis}
\end{tikzpicture}
&
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,3000,...,12000},
xmax=12000,
ymax=35,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=5.5cm,
height=4.5cm
]
\addplot[green,mark=square*,mark options={fill=white}] table {re2b.data};
\addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
\end{axis}
\end{tikzpicture}
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Languages}
\begin{itemize}
\item A \alert{\bf language} is a set of strings, for example\medskip
\begin{center}
\bl{$\{[], hello, \textit{foobar}, a, abc\}$}
\end{center}\bigskip
\item \alert{\bf Concatenation} of strings and languages
\begin{center}
\begin{tabular}{rcl}
\bl{$\textit{foo}\;@\;bar$} & \bl{$=$} & \bl{$\textit{foobar}$}\medskip\\
\bl{$A\;@\;B$} & \bl{$\dn$} & \bl{$\{ s_1\,@\,s_2 \;\mid\; s_1 \in A \wedge s_2 \in B\}$}
\end{tabular}
\end{center}
\bigskip
\small
\item [] For example \bl{$A = \{foo, bar\}$}, \bl{$B = \{a, b\}$}
\[
\bl{A \,@\, B = \{fooa, foob, bara, barb\}}
\]
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Power Operation}
\begin{itemize}
\item The \alert{\bf Power} of a language:
\begin{center}
\begin{tabular}{lcl}
\bl{$A^0$} & \bl{$\dn$} & \bl{$\{[]\}$}\\
\bl{$A^{n+1}$} & \bl{$\dn$} & \bl{$A \,@\, A^n$}
\end{tabular}
\end{center}\bigskip
\item[] For example
\begin{center}
\begin{tabular}{l}
\bl{$A^4 = A \,@\, A \,@\, A \,@\, A$}\\
\bl{$A^0 \dn \{[]\}$}\\
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Homework Question}
\begin{itemize}
\item Say \bl{$A = \{[a],[b],[c],[d]\}$}.\bigskip
\begin{center}
How many strings are in \bl{$A^4$}?
\end{center}\bigskip\medskip\pause
\begin{center}
\begin{tabular}{l}
What if \bl{$A = \{[a],[b],[c],[]\}$};\\
how many strings are then in \bl{$A^4$}?
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Star Operation}
\begin{itemize}
\item The \alert{\bf Star} of a \underline{language}:
\bigskip
\begin{center}
\begin{tabular}{c}
\bl{$A^* \dn \bigcup_{0\le n} A^n$}
\end{tabular}
\end{center}\bigskip
\item[] This expands to
\[
\bl{A^0 \cup A^1 \cup A^2 \cup A^3 \cup A^4 \cup \ldots}
\]
\small
\[
\bl{\{[]\} \;\cup\; A \;\cup\; A\,@\,A \;\cup\;
A\,@\,A\,@\,A \;\cup\; A\,@\,A\,@\,A\,@\,A \cup \ldots}
\]
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Semantic Derivative}
\begin{itemize}
\item The \alert{\bf Semantic Derivative} of a
\underline{language}\\ wrt to a character \bl{$c$}:
\bigskip
\begin{center}
\bl{$Der\,c\,A \dn \{ s \;|\; c\!::\!s \in A\}$ }
\end{center}\bigskip\bigskip\bigskip
For \bl{$A = \{\textit{foo}, \textit{bar}, \textit{frak}\}$} then
\begin{center}
\bl{\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}l}
$Der\,f\,A$ & $=$ & $\{\textit{oo}, \textit{rak}\}$\\
$Der\,b\,A$ & $=$ & $\{\textit{ar}\}$\\
$Der\,a\,A$ & $=$ & $\varnothing$\\\pause
\end{tabular}}
\end{center}
\small
We can extend this definition to strings
\[
\bl{Ders\,s\,A = \{s'\;|\;s\,@\,s' \in A\}}
\]
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Regular Expressions}
Their inductive definition:
\begin{textblock}{6}(2,7.5)
\begin{tabular}{@ {}rrl@ {\hspace{13mm}}l}
\bl{$r$} & \bl{$::=$} & \bl{$\varnothing$} & null\\
& \bl{$\mid$} & \bl{$\epsilon$} & empty string / \pcode{""} / $[]$\\
& \bl{$\mid$} & \bl{$c$} & character\\
& \bl{$\mid$} & \bl{$r_1 \cdot r_2$} & sequence\\
& \bl{$\mid$} & \bl{$r_1 + r_2$} & alternative / choice\\
& \bl{$\mid$} & \bl{$r^*$} & star (zero or more)\\
\end{tabular}
\end{textblock}
\only<2->{\footnotesize
\begin{textblock}{9}(2,0.5)
\begin{bubble}[9.8cm]
\lstinputlisting{../progs/app01.scala}
\end{bubble}
\end{textblock}}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Meaning of a\\[-2mm] Regular Expression\end{tabular}}
\begin{textblock}{15}(1,4)
\begin{tabular}{@ {}rcl}
\bl{$L(\varnothing)$} & \bl{$\dn$} & \bl{$\varnothing$}\\
\bl{$L(\epsilon)$} & \bl{$\dn$} & \bl{$\{[]\}$}\\
\bl{$L(c)$} & \bl{$\dn$} & \bl{$\{[c]\}$}\\
\bl{$L(r_1 + r_2)$} & \bl{$\dn$} & \bl{$L(r_1) \cup L(r_2)$}\\
\bl{$L(r_1 \cdot r_2)$} & \bl{$\dn$} & \bl{$L(r_1) \,@\, L(r_2)$}\\
\bl{$L(r^*)$} & \bl{$\dn$} & \bl{$(L(r))^*$}\\
\end{tabular}
\end{textblock}
\begin{textblock}{6}(9,12)\small
\bl{$L$} is a function from regular expressions to
sets of strings\\
\bl{$L$ : Rexp $\Rightarrow$ Set$[$String$]$}
\end{textblock}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\large
\begin{center}
What is \bl{$L(a^*)$}?
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}
When Are Two Regular\\[-1mm]
Expressions Equivalent?\end{tabular}}
\large
\begin{center}
\bl{$r_1 \equiv r_2 \;\;\dn\;\; L(r_1) = L(r_2)$}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Concrete Equivalences}
\begin{center}
\bl{\begin{tabular}{rcl}
$(a + b) + c$ & $\equiv$ & $a + (b + c)$\\
$a + a$ & $\equiv$ & $a$\\
$a + b$ & $\equiv$ & $b + a$\\
$(a \cdot b) \cdot c$ & $\equiv$ & $a \cdot (b \cdot c)$\\
$c \cdot (a + b)$ & $\equiv$ & $(c \cdot a) + (c \cdot b)$\bigskip\bigskip\\\pause
$a \cdot a$ & $\not\equiv$ & $a$\\
$a + (b \cdot c)$ & $\not\equiv$ & $(a + b) \cdot (a + c)$\\
\end{tabular}}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Corner Cases}
\begin{center}
\bl{\begin{tabular}{rcl}
$a \cdot \varnothing$ & $\not\equiv$ & $a$\\
$a + \epsilon$ & $\not\equiv$ & $a$\\
$\epsilon$ & $\equiv$ & $\varnothing^*$\\
$\epsilon^*$ & $\equiv$ & $\epsilon$\\
$\varnothing^*$ & $\not\equiv$ & $\varnothing$\\
\end{tabular}}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Simplification Rules}
\begin{center}
\bl{\begin{tabular}{rcl}
$r + \varnothing$ & $\equiv$ & $r$\\
$\varnothing + r$ & $\equiv$ & $r$\\
$r \cdot \epsilon$ & $\equiv$ & $r$\\
$\epsilon \cdot r$ & $\equiv$ & $r$\\
$r \cdot \varnothing$ & $\equiv$ & $\varnothing$\\
$\varnothing \cdot r$ & $\equiv$ & $\varnothing$\\
$r + r$ & $\equiv$ & $r$
\end{tabular}}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\newcommand{\YES}{\textcolor{gray}{yes}}
%\newcommand{\NO}{\textcolor{gray}{no}}
%\newcommand{\FORALLR}{\textcolor{gray}{$\forall$ r.}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Specification\\[-1mm] for Matching\end{tabular}}
\large
A regular expression \bl{$r$} matches a string \bl{$s$}\\ if and only if
\begin{center}
\bl{$s \in L(r)$}\\
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,5,...,30},
xmax=30,
ymax=35,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=9cm,
height=7cm,
legend entries={Python,Ruby},
legend pos=north west,
legend cell align=left
]
\addplot[blue,mark=*, mark options={fill=white}]
table {re-python.data};
\addplot[brown,mark=pentagon*, mark options={fill=white}]
table {re-ruby.data};
\end{axis}
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Evil Regular Expressions}
\begin{itemize}
\item \alert{R}egular \alert{e}xpression \alert{D}enial \alert{o}f \alert{S}ervice (ReDoS)\bigskip
\item Evil regular expressions\medskip
\begin{itemize}
\item \bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}
\item \bl{$(a^+)^+$}
\item \bl{$([a$\,-\,$z]^+)^*$}
\item \bl{$(a + a \cdot a)^+$}
\item \bl{$(a + a?)^+$}
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{A Matching Algorithm}
\ldots{}whether a regular expression can match the empty string:
\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
\bl{$nullable(\varnothing)$} & \bl{$\dn$} & \bl{\textit{false}}\\
\bl{$nullable(\epsilon)$} & \bl{$\dn$} & \bl{\textit{true}}\\
\bl{$nullable (c)$} & \bl{$\dn$} & \bl{\textit{false}}\\
\bl{$nullable (r_1 + r_2)$} & \bl{$\dn$} & \bl{$nullable(r_1) \vee nullable(r_2)$} \\
\bl{$nullable (r_1 \cdot r_2)$} & \bl{$\dn$} & \bl{$nullable(r_1) \wedge nullable(r_2)$} \\
\bl{$nullable (r^*)$} & \bl{$\dn$} & \bl{\textit{true}}\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Derivative of a Rexp}
\large
If \bl{$r$} matches the string \bl{$c\!::\!s$}, what is a regular
expression that matches just \bl{$s$}?\bigskip\bigskip\bigskip\bigskip
\small
\bl{$der\,c\,r$} gives the answer, Brzozowski 1964
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Derivative of a Rexp}
\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
\bl{$der\, c\, (\varnothing)$} & \bl{$\dn$} & \bl{$\varnothing$} & \\
\bl{$der\, c\, (\epsilon)$} & \bl{$\dn$} & \bl{$\varnothing$} & \\
\bl{$der\, c\, (d)$} & \bl{$\dn$} & \bl{if $c = d$ then $\epsilon$ else $\varnothing$} & \\
\bl{$der\, c\, (r_1 + r_2)$} & \bl{$\dn$} & \bl{$der\, c\, r_1 + der\, c\, r_2$} & \\
\bl{$der\, c\, (r_1 \cdot r_2)$} & \bl{$\dn$} & \bl{if $nullable (r_1)$}\\
& & \bl{then $(der\,c\,r_1) \cdot r_2 + der\, c\, r_2$}\\
& & \bl{else $(der\, c\, r_1) \cdot r_2$}\\
\bl{$der\, c\, (r^*)$} & \bl{$\dn$} & \bl{$(der\,c\,r) \cdot (r^*)$} &\bigskip\\\pause
\bl{$\textit{ders}\, []\, r$} & \bl{$\dn$} & \bl{$r$} & \\
\bl{$\textit{ders}\, (c\!::\!s)\, r$} & \bl{$\dn$} & \bl{$\textit{ders}\,s\,(der\,c\,r)$} & \\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Examples}
Given \bl{$r \dn ((a \cdot b) + b)^*$} what is
\begin{center}
\begin{tabular}{l}
\bl{$der\,a\,r =\;?$}\\
\bl{$der\,b\,r =\;?$}\\
\bl{$der\,c\,r =\;?$}
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{The Algorithm}
\begin{center}
\begin{tabular}{@{}rll@{}}
Input: & \bl{$r_1$}, \bl{$abc$}\medskip\\
Step 1: & build derivative of \bl{$a$} and \bl{$r_1$} & \bl{$(r_2 = der\,a\,r_1)$}\smallskip\\
Step 2: & build derivative of \bl{$b$} and \bl{$r_2$} & \bl{$(r_3 = der\,b\,r_2)$}\smallskip\\
Step 3: & build derivative of \bl{$c$} and \bl{$r_3$} & \bl{$(r_4 = der\,b\,r_3)$}\smallskip\\
Step 4: & the string is exhausted; test & (\bl{$nullable(r_4)$})\\
& whether \bl{$r_4$} can recognise\\
& the empty string\smallskip\\
Output: & result of the test\\
& $\Rightarrow \bl{\textit{true}} \,\text{or}\,
\bl{\textit{false}}$\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{The Idea of the Algorithm}
If we want to recognise the string \bl{$abc$} with regular
expression \bl{$r_1$} then\medskip
\begin{enumerate}
\item \bl{$Der\,a\,(L(r_1))$}\pause
\item \bl{$Der\,b\,(Der\,a\,(L(r_1)))$}\pause
\item \bl{$Der\,c\,(Der\,b\,(Der\,a\,(L(r_1))))$}\bigskip
\item finally we test whether the empty string is in this
set; same for \bl{$Ders\,abc\,(L(r_1))$}.\medskip
\end{enumerate}
The matching algorithm works similarly, just over regular expressions instead of sets.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,5,...,30},
xmax=30,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=7cm,
height=7cm,
legend entries={Python,Ruby,Scala V1},
legend pos=outer north east,
legend cell align=left
]
\addplot[blue,mark=*, mark options={fill=white}]
table {re-python.data};
\addplot[brown,mark=pentagon*, mark options={fill=white}]
table {re-ruby.data};
\addplot[red,mark=triangle*,mark options={fill=white}]
table {re1.data};
\end{axis}
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{A Problem}
We represented the ``n-times'' \bl{$a^{\{n\}}$} as a
sequence regular expression:
\begin{center}
\begin{tabular}{rl}
1: & \bl{$a$}\\
2: & \bl{$a\cdot a$}\\
3: & \bl{$a\cdot a\cdot a$}\\
& \ldots\\
13: & \bl{$a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a\cdot a$}\\
& \ldots\\
20:
\end{tabular}
\end{center}
This problem is aggravated with \bl{$a^?$} being represented
as \bl{$\epsilon + a$}.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Solving the Problem}
What happens if we extend our regular expressions
\begin{center}
\begin{tabular}{rcl}
\bl{$r$} & \bl{$::=$} & \bl{\ldots}\\
& \bl{$\mid$} & \bl{$r^{\{n\}}$}\\
& \bl{$\mid$} & \bl{$r^?$}
\end{tabular}
\end{center}
What is their meaning? What are the cases for \bl{$nullable$} and \bl{$der$}?
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,200,...,1000},
xmax=1000,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=9.5cm,
height=7cm,
legend entries={Python,Ruby,Scala V1,Scala V2},
legend pos=north west,
legend cell align=left
]
\addplot[blue,mark=*, mark options={fill=white}]
table {re-python.data};
\addplot[brown,mark=pentagon*, mark options={fill=white}]
table {re-ruby.data};
\addplot[red,mark=triangle*,mark options={fill=white}]
table {re1.data};
\addplot[green,mark=square*,mark options={fill=white}]
table {re2b.data};
\end{axis}
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Examples}
Recall the example of \bl{$r \dn ((a \cdot b) + b)^*$} with
\begin{center}
\begin{tabular}{l}
\bl{$der\,a\,r = ((\epsilon \cdot b) + \varnothing) \cdot r$}\\
\bl{$der\,b\,r = ((\varnothing \cdot b) + \epsilon)\cdot r$}\\
\bl{$der\,c\,r = ((\varnothing \cdot b) + \varnothing)\cdot r$}
\end{tabular}
\end{center}
What are these regular expressions equivalent to?
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{\bl{$(a^?^{\{n\}}) \cdot a^{\{n\}}$}}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xlabel={\pcode{a}s},
ylabel={time in secs},
enlargelimits=false,
xtick={0,3000,...,12000},
xmax=12000,
ymax=35,
ytick={0,5,...,30},
scaled ticks=false,
axis lines=left,
width=9cm,
height=7cm
]
\addplot[green,mark=square*,mark options={fill=white}] table {re2b.data};
\addplot[black,mark=square*,mark options={fill=white}] table {re3.data};
\end{axis}
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{What is good about this Alg.}
\begin{itemize}
\item extends to most regular expressions, for example
\bl{$\sim r$}
\item is easy to implement in a functional language
\item the algorithm is already quite old; there is still
work to be done to use it as a tokenizer (that is brand new work)
\item we can prove its correctness\ldots
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Proofs about Rexps}
Remember their inductive definition:\\[5cm]
\begin{textblock}{6}(5,5)
\begin{tabular}{@ {}rrl}
\bl{$r$} & \bl{$::=$} & \bl{$\varnothing$}\\
& \bl{$\mid$} & \bl{$\epsilon$} \\
& \bl{$\mid$} & \bl{$c$} \\
& \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
& \bl{$\mid$} & \bl{$r_1 + r_2$} \\
& \bl{$\mid$} & \bl{$r^*$} \\
\end{tabular}
\end{textblock}
If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Rexp (2)}
\begin{itemize}
\item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
\item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already
holds for \bl{$r$}.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Rexp (3)}
Assume \bl{$P(r)$} is the property:
\begin{center}
\bl{$nullable(r)$} if and only if \bl{$[] \in L(r)$}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Rexp (4)}
\begin{center}
\bl{\begin{tabular}{r@{\hspace{2mm}}c@{\hspace{2mm}}l}
$rev(\varnothing)$ & $\dn$ & $\varnothing$\\
$rev(\epsilon)$ & $\dn$ & $\epsilon$\\
$rev(c)$ & $\dn$ & $c$\\
$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
$rev(r^*)$ & $\dn$ & $rev(r)^*$\\
\end{tabular}}
\end{center}
We can prove
\begin{center}
\bl{$L(rev(r)) = \{s^{-1} \;|\; s \in L(r)\}$}
\end{center}
by induction on \bl{$r$}.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}
Correctness Proof\\[-1mm] for our Matcher\end{tabular}}
\begin{itemize}
\item We started from
\begin{center}
\begin{tabular}{rp{4cm}}
& \bl{$s \in L(r)$}\medskip\\
\bl{$\Leftrightarrow$} & \bl{$[] \in Ders\,s\,(L(r))$}\pause
\end{tabular}
\end{center}
\item if we can show \bl{$Ders\, s\,(L(r)) = L(ders\,s\,r)$} we
have
\begin{center}
\begin{tabular}{rp{4cm}}
\bl{$\Leftrightarrow$} & \bl{$[] \in L(ders\,s\,r)$}\medskip\\
\bl{$\Leftrightarrow$} & \bl{$nullable(ders\,s\,r)$}\medskip\\
\bl{$\dn$} & \bl{$matches\,s\,r$}
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Rexp (5)}
Let \bl{$Der\,c\,A$} be the set defined as
\begin{center}
\bl{$Der\,c\,A \dn \{ s \;|\; c\!::\!s \in A\}$ }
\end{center}
We can prove
\begin{center}
\bl{$L(der\,c\,r) = Der\,c\,(L(r))$}
\end{center}
by induction on \bl{$r$}.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Strings}
If we want to prove something, say a property \bl{$P(s)$}, for all strings \bl{$s$} then \ldots\bigskip
\begin{itemize}
\item \bl{$P$} holds for the empty string, and\medskip
\item \bl{$P$} holds for the string \bl{$c\!::\!s$} under the assumption that \bl{$P$}
already holds for \bl{$s$}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Strings (2)}
We can then prove
\begin{center}
\bl{$Ders\,s\,(L(r)) = L(ders\,s\,r)$}
\end{center}
We can finally prove
\begin{center}
\bl{$matches\,s\,r$} if and only if \bl{$s \in L(r)$}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: