hw02.tex
author Christian Urban <urbanc@in.tum.de>
Wed, 31 Oct 2012 08:42:14 +0000
changeset 52 0874de7bdbd8
parent 22 1efa38ee7237
permissions -rw-r--r--
tuned

\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}

\begin{document}

\section*{Homework 2}

\begin{enumerate}
\item Give regular expressions for (a) decimal numbers and for (b) binary numbers. 
(Hint: Observe that the empty string is not a number. Also observe that leading 0s 
are normally not written.)

\item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and 
$(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$.

\item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to
$a$ and $b$. Is $r$ nullable?

\item What is a regular language?

\item Prove that for all regular expressions $r$ we have
\begin{center}
$\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$
\end{center}

\end{enumerate}

\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: