--- a/hws/hw04.tex Tue Oct 03 23:23:57 2023 +0100
+++ b/hws/hw04.tex Thu Oct 05 10:31:05 2023 +0100
@@ -95,35 +95,57 @@
}
-\item \textbf{(Deleted)} Assume that $s^{-1}$ stands for the operation of reversing a
- string $s$. Given the following \emph{reversing} function on regular
- expressions
-
- \begin{center}
- \begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
- $rev(\ZERO)$ & $\dn$ & $\ZERO$\\
- $rev(\ONE)$ & $\dn$ & $\ONE$\\
- $rev(c)$ & $\dn$ & $c$\\
- $rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
- $rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
- $rev(r^*)$ & $\dn$ & $rev(r)^*$\\
- \end{tabular}
- \end{center}
+%\item \textbf{(Deleted)} Assume that $s^{-1}$ stands for the operation of reversing a
+% string $s$. Given the following \emph{reversing} function on regular
+% expressions
+%
+% \begin{center}
+% \begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
+% $rev(\ZERO)$ & $\dn$ & $\ZERO$\\
+% $rev(\ONE)$ & $\dn$ & $\ONE$\\
+% $rev(c)$ & $\dn$ & $c$\\
+% $rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
+% $rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
+% $rev(r^*)$ & $\dn$ & $rev(r)^*$\\
+% \end{tabular}
+% \end{center}
+%
+% and the set
+%
+% \begin{center}
+% $Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
+% \end{center}
+%
+% prove whether
+%
+% \begin{center}
+% $L(rev(r)) = Rev (L(r))$
+% \end{center}
+%
+% holds.
- and the set
-
- \begin{center}
- $Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
- \end{center}
+\item Construct a regular expression that can validate passwords. A
+ password should be at least 8 characters long and consist of upper-
+ and lower-case letters and digits. It should contain at least a
+ single lower-case letter, at least a single upper-case letter and at
+ least a single digit. If possible ise the intersection regular
+ expression from CW1, written $\_\&\_$, the bounded regular
+ expressions; you can also assume a regular expression written
+ \texttt{ALL} that can match any character.
- prove whether
+ \solution{
+ You can build-up the different constraints separately and then
+ use the intersection operator:
- \begin{center}
- $L(rev(r)) = Rev (L(r))$
+ \begin{center}
+ \begin{tabular}{lll}
+ $ALL^{\{8..\}}$ & \;\&\; & $(ALL^*\cdot [a-z]\cdot ALL^*)$\\
+ & \;\&\; & $(ALL^*\cdot [A-Z]\cdot ALL^*)$\\
+ & \;\&\; & $(ALL^*\cdot [0-9]\cdot ALL^*)$\\
+ \end{tabular}
\end{center}
-
- holds.
-
+ }
+
\item Assume the delimiters for comments are
\texttt{$\slash$*} and \texttt{*$\slash$}. Give a
regular expression that can recognise comments of the