--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/matcher/re3.sc Mon Jun 29 21:05:34 2020 +0100
@@ -0,0 +1,144 @@
+// A version with simplification of derivatives;
+// this keeps the regular expressions small, which
+// is good for the run-time
+//
+// call the test cases with X = {1,2}
+//
+// amm re3.sc testX
+//
+// or
+//
+// amm re3.sc all
+
+
+abstract class Rexp
+case object ZERO extends Rexp
+case object ONE extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+case class NTIMES(r: Rexp, n: Int) extends Rexp
+
+
+
+// the nullable function: tests whether the regular
+// expression can recognise the empty string
+def nullable (r: Rexp) : Boolean = r match {
+ case ZERO => false
+ case ONE => true
+ case CHAR(_) => false
+ case ALT(r1, r2) => nullable(r1) || nullable(r2)
+ case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+ case STAR(_) => true
+ case NTIMES(r, i) => if (i == 0) true else nullable(r)
+}
+
+// the derivative of a regular expression w.r.t. a character
+def der (c: Char, r: Rexp) : Rexp = r match {
+ case ZERO => ZERO
+ case ONE => ZERO
+ case CHAR(d) => if (c == d) ONE else ZERO
+ case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
+ case SEQ(r1, r2) =>
+ if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
+ else SEQ(der(c, r1), r2)
+ case STAR(r1) => SEQ(der(c, r1), STAR(r1))
+ case NTIMES(r, i) =>
+ if (i == 0) ZERO else SEQ(der(c, r), NTIMES(r, i - 1))
+}
+
+def simp(r: Rexp) : Rexp = r match {
+ case ALT(r1, r2) => (simp(r1), simp(r2)) match {
+ case (ZERO, r2s) => r2s
+ case (r1s, ZERO) => r1s
+ case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
+ }
+ case SEQ(r1, r2) => (simp(r1), simp(r2)) match {
+ case (ZERO, _) => ZERO
+ case (_, ZERO) => ZERO
+ case (ONE, r2s) => r2s
+ case (r1s, ONE) => r1s
+ case (r1s, r2s) => SEQ(r1s, r2s)
+ }
+ case r => r
+}
+
+
+// the derivative w.r.t. a string (iterates der)
+def ders(s: List[Char], r: Rexp) : Rexp = s match {
+ case Nil => r
+ case c::s => ders(s, simp(der(c, r)))
+}
+
+
+// the main matcher function
+def matcher(r: Rexp, s: String) : Boolean =
+ nullable(ders(s.toList, r))
+
+
+// one or zero
+def OPT(r: Rexp) = ALT(r, ONE)
+
+
+// Test Cases
+
+// evil regular expressions: (a?){n} a{n} and (a*)* b
+def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
+val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
+
+
+def time_needed[T](i: Int, code: => T) = {
+ val start = System.nanoTime()
+ for (j <- 1 to i) code
+ val end = System.nanoTime()
+ (end - start)/(i * 1.0e9)
+}
+
+
+//test: (a?{n}) (a{n})
+@doc("Test (a?{n}) (a{n})")
+@main
+def test1() = {
+ for (i <- 0 to 8000 by 1000) {
+ println(f"$i: ${time_needed(3, matcher(EVIL1(i), "a" * i))}%.5f")
+ }
+}
+
+//test: (a*)* b
+@doc("Test (a*)* b")
+@main
+def test2() = {
+ for (i <- 0 to 6000000 by 500000) {
+ println(f"$i: ${time_needed(3, matcher(EVIL2, "a" * i))}%.5f")
+ }
+}
+
+// size of a regular expressions - for testing purposes
+def size(r: Rexp) : Int = r match {
+ case ZERO => 1
+ case ONE => 1
+ case CHAR(_) => 1
+ case ALT(r1, r2) => 1 + size(r1) + size(r2)
+ case SEQ(r1, r2) => 1 + size(r1) + size(r2)
+ case STAR(r) => 1 + size(r)
+ case NTIMES(r, _) => 1 + size(r)
+}
+
+
+// now the size of the derivatives grows
+// much, much slower
+
+size(ders("".toList, EVIL2)) // 5
+size(ders("a".toList, EVIL2)) // 8
+size(ders("aa".toList, EVIL2)) // 8
+size(ders("aaa".toList, EVIL2)) // 8
+size(ders("aaaa".toList, EVIL2)) // 8
+size(ders("aaaaa".toList, EVIL2)) // 8
+
+
+@doc("All tests.")
+@main
+def all() = { test1(); test2() }
+
+