--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/scala/automata.scala Sat Jun 15 09:11:11 2013 -0400
@@ -0,0 +1,106 @@
+
+// a class for deterministic finite automata,
+// the type of states is kept polymorphic
+
+case class Automaton[A](start: A, states: Set[A], delta: Map[(A, Char), A], fins: Set[A]) {
+
+ // the transition function lifted to list of characters
+ def deltas(q: A, cs: List[Char]) : Either[A, String] =
+ if (states.contains(q)) cs match {
+ case Nil => Left(q)
+ case c::cs =>
+ if (delta.isDefinedAt(q, c)) deltas(delta(q, c), cs)
+ else Right(q + " does not have a transition for " + c)
+ }
+ else Right(q + " is not a state of the automaton")
+
+ // wether a string is accepted by the automaton
+ def accepts(s: String) = deltas(start, s.toList) match {
+ case Left(q) => fins.contains(q)
+ case _ => false
+ }
+}
+
+
+// translating a regular expression into a finite
+// automaton
+
+abstract class Rexp
+
+case object NULL extends Rexp
+case object EMPTY extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+
+implicit def string2rexp(s : String) = {
+ def chars2rexp (cs: List[Char]) : Rexp = cs match {
+ case Nil => EMPTY
+ case c::Nil => CHAR(c)
+ case c::cs => SEQ(CHAR(c), chars2rexp(cs))
+ }
+ chars2rexp(s.toList)
+}
+
+def nullable (r: Rexp) : Boolean = r match {
+ case NULL => false
+ case EMPTY => true
+ case CHAR(_) => false
+ case ALT(r1, r2) => nullable(r1) || nullable(r2)
+ case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+ case STAR(_) => true
+}
+
+def der (r: Rexp, c: Char) : Rexp = r match {
+ case NULL => NULL
+ case EMPTY => NULL
+ case CHAR(d) => if (c == d) EMPTY else NULL
+ case ALT(r1, r2) => ALT(der(r1, c), der(r2, c))
+ case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2, c))
+ else SEQ(der(r1, c), r2)
+ case STAR(r) => SEQ(der(r, c), STAR(r))
+}
+
+
+// Here we construct an automaton whose
+// states are regular expressions
+type State = Rexp
+type States = Set[State]
+type Transition = Map[(State, Char), State]
+
+// we use as an alphabet all lowercase letters
+val alphabet = "abcdefghijklmnopqrstuvwxyz".toSet
+
+def goto(q: State, c: Char, qs: States, delta: Transition) : (States, Transition) = {
+ val q_der : State = der(q, c)
+ if (qs.contains(q_der)) (qs, delta + ((q, c) -> q))
+ else explore(qs + q_der, delta + ((q, c) -> q_der), q_der)
+}
+
+def explore (qs: States, delta: Transition, q: State) : (States, Transition) =
+ alphabet.foldRight[(States, Transition)] (qs, delta) ((c, qsd) => goto(q, c, qsd._1, qsd._2))
+
+
+def mk_automaton (r: Rexp) : Automaton[Rexp] = {
+ val (qs, delta) = explore(Set(r), Map(), r);
+ val fins = for (q <- qs if nullable(q)) yield q;
+ Automaton[Rexp](r, qs, delta, fins)
+}
+
+val A = mk_automaton(ALT("ab","ac"))
+
+A.start
+A.states.toList.length
+
+println(A.accepts("bd"))
+println(A.accepts("ab"))
+println(A.accepts("ac"))
+
+val r1 = STAR(ALT("a","b"))
+val r2 = SEQ("b","b")
+val r3 = SEQ(SEQ(SEQ(r1, r2), r1), "a")
+val B = mk_automaton(r3)
+
+B.start
+B.states.toList.length