--- a/automata.scala Sun Dec 23 00:38:56 2012 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,106 +0,0 @@
-
-// a class for deterministic finite automata,
-// the type of states is kept polymorphic
-
-case class Automaton[A](start: A, states: Set[A], delta: Map[(A, Char), A], fins: Set[A]) {
-
- // the transition function lifted to list of characters
- def deltas(q: A, cs: List[Char]) : Either[A, String] =
- if (states.contains(q)) cs match {
- case Nil => Left(q)
- case c::cs =>
- if (delta.isDefinedAt(q, c)) deltas(delta(q, c), cs)
- else Right(q + " does not have a transition for " + c)
- }
- else Right(q + " is not a state of the automaton")
-
- // wether a string is accepted by the automaton
- def accepts(s: String) = deltas(start, s.toList) match {
- case Left(q) => fins.contains(q)
- case _ => false
- }
-}
-
-
-// translating a regular expression into a finite
-// automaton
-
-abstract class Rexp
-
-case object NULL extends Rexp
-case object EMPTY extends Rexp
-case class CHAR(c: Char) extends Rexp
-case class ALT(r1: Rexp, r2: Rexp) extends Rexp
-case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
-case class STAR(r: Rexp) extends Rexp
-
-implicit def string2rexp(s : String) = {
- def chars2rexp (cs: List[Char]) : Rexp = cs match {
- case Nil => EMPTY
- case c::Nil => CHAR(c)
- case c::cs => SEQ(CHAR(c), chars2rexp(cs))
- }
- chars2rexp(s.toList)
-}
-
-def nullable (r: Rexp) : Boolean = r match {
- case NULL => false
- case EMPTY => true
- case CHAR(_) => false
- case ALT(r1, r2) => nullable(r1) || nullable(r2)
- case SEQ(r1, r2) => nullable(r1) && nullable(r2)
- case STAR(_) => true
-}
-
-def der (r: Rexp, c: Char) : Rexp = r match {
- case NULL => NULL
- case EMPTY => NULL
- case CHAR(d) => if (c == d) EMPTY else NULL
- case ALT(r1, r2) => ALT(der(r1, c), der(r2, c))
- case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2, c))
- else SEQ(der(r1, c), r2)
- case STAR(r) => SEQ(der(r, c), STAR(r))
-}
-
-
-// Here we construct an automaton whose
-// states are regular expressions
-type State = Rexp
-type States = Set[State]
-type Transition = Map[(State, Char), State]
-
-// we use as an alphabet all lowercase letters
-val alphabet = "abcdefghijklmnopqrstuvwxyz".toSet
-
-def goto(q: State, c: Char, qs: States, delta: Transition) : (States, Transition) = {
- val q_der : State = der(q, c)
- if (qs.contains(q_der)) (qs, delta + ((q, c) -> q))
- else explore(qs + q_der, delta + ((q, c) -> q_der), q_der)
-}
-
-def explore (qs: States, delta: Transition, q: State) : (States, Transition) =
- alphabet.foldRight[(States, Transition)] (qs, delta) ((c, qsd) => goto(q, c, qsd._1, qsd._2))
-
-
-def mk_automaton (r: Rexp) : Automaton[Rexp] = {
- val (qs, delta) = explore(Set(r), Map(), r);
- val fins = for (q <- qs if nullable(q)) yield q;
- Automaton[Rexp](r, qs, delta, fins)
-}
-
-val A = mk_automaton(ALT("ab","ac"))
-
-A.start
-A.states.toList.length
-
-println(A.accepts("bd"))
-println(A.accepts("ab"))
-println(A.accepts("ac"))
-
-val r1 = STAR(ALT("a","b"))
-val r2 = SEQ("b","b")
-val r3 = SEQ(SEQ(SEQ(r1, r2), r1), "a")
-val B = mk_automaton(r3)
-
-B.start
-B.states.toList.length