handouts/ho02.tex
changeset 999 e719e420cbc7
parent 961 c0600f8b6427
child 1004 99e89ad35d76
--- a/handouts/ho02.tex	Fri Oct 03 10:10:33 2025 +0100
+++ b/handouts/ho02.tex	Fri Oct 03 17:07:01 2025 +0100
@@ -258,7 +258,7 @@
 
 \begin{equation}
 (r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO)
-\label{big}
+\label{bbbig}
 \end{equation}
 
 \noindent If we can find an equivalent regular expression that is
@@ -268,7 +268,7 @@
 $L(r)$ or in $L(r')$ does not matter as long as $r\equiv r'$. Yes? \footnote{You have checked this for yourself? Your friendly lecturer might talk rubbish\ldots{}one never knows.}
 
 In the example above you will see that the regular expression in
-\eqref{big} is equivalent to just $r_1$. You can verify this by
+\eqref{bbbig} is equivalent to just $r_1$. You can verify this by
 iteratively applying the simplification rules from above:
 
 \begin{center}
@@ -624,7 +624,7 @@
 $r^{\{n\}}$. In Scala we would introduce a constructor like
 
 \begin{center}
-\code{case class NTIMES(r: Rexp, n: Int) extends Rexp}
+\code{case NTIMES(r: Rexp, n: Int)}
 \end{center}
 
 \noindent With this fix we have a constant ``size'' regular expression