--- a/slides/slides06.tex Fri Nov 02 00:24:28 2018 +0000
+++ b/slides/slides06.tex Tue Nov 06 00:48:53 2018 +0000
@@ -3,7 +3,7 @@
\usepackage{../graphics}
\usepackage{../langs}
\usepackage{../data}
-
+\usepackage{../grammar}
% beamer stuff
\renewcommand{\slidecaption}{CFL 06, King's College London}
@@ -28,7 +28,7 @@
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
- Office: & N7.07 (North Wing, Bush House)\\
+ Office: & N\liningnums{7.07} (North Wing, Bush House)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
@@ -118,7 +118,7 @@
\end{center}\bigskip
\begin{itemize}
-\item you consume one or more token from the\\
+\item you consume one or more tokens from the\\
input (stream)
\item also works for characters and strings
\end{itemize}
@@ -227,19 +227,13 @@
Which languages are recognised by the following two grammars?
-\begin{center}
-\bl{\begin{tabular}{lcl}
-$S$ & $\rightarrow$ & $1 \cdot S \cdot S$\\
- & $|$ & $\epsilon$
-\end{tabular}}
-\end{center}\bigskip
+\bl{\begin{plstx}[margin=3cm]
+: \meta{S} ::= \liningnums{1}\cdot\meta{S}\cdot \meta{S} | \epsilon\\
+\end{plstx}}
-\begin{center}
-\bl{\begin{tabular}{lcl}
-$U$ & $\rightarrow$ & $1 \cdot U$\\
- & $|$ & $\epsilon$
-\end{tabular}}
-\end{center}
+\bl{\begin{plstx}[margin=3cm]
+: \meta{U} ::= \liningnums{1}\cdot\meta{U} | \epsilon\\
+\end{plstx}}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -277,62 +271,55 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}Arithmetic Expressions\end{tabular}}
+\frametitle{Arithmetic Expressions}
A grammar for arithmetic expressions and numbers:
-\begin{center}
-\bl{\begin{tabular}{lcl}
-$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\
-$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\: \ldots \;|\; 9$
-\end{tabular}}
-\end{center}
+\bl{\begin{plstx}[margin=1cm]
+ : \meta{E} ::= \meta{E} \cdot + \cdot \meta{E}
+ | \meta{E} \cdot * \cdot \meta{E}
+ | ( \cdot \meta{E} \cdot ) | \meta{N}\\
+ : \meta{N} ::= \meta{N} \cdot \meta{N} |
+ 0 | 1 | \ldots | 9\\
+\end{plstx}}
Unfortunately it is left-recursive (and ambiguous).\medskip\\
-A problem for \alert{recursive descent parsers} (e.g.~parser combinators).
-\bigskip\pause
+A problem for \alert{recursive descent parsers} (e.g.~parser
+combinators). \bigskip\pause
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[t]
-\frametitle{\begin{tabular}{c}Numbers\end{tabular}}
-
-
+\frametitle{Numbers}
-\begin{center}
-\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\
-\end{tabular}}
-\end{center}
+\bl{\begin{plstx}[margin=1cm]
+ : \meta{N} ::= \meta{N} \cdot \meta{N} |
+ 0 | 1 | \ldots | 9\\
+\end{plstx}}
A non-left-recursive, non-ambiguous grammar for numbers:
-\begin{center}
-\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $0 \cdot N \;|\;1 \cdot N \;|\;\ldots\;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\
-\end{tabular}}
-\end{center}
+\bl{\begin{plstx}[margin=1cm]
+ : \meta{N} ::= 0 \cdot \meta{N} | 1 \cdot \meta{N} | \ldots |
+ 0 | 1 | \ldots | 9\\
+\end{plstx}}
-
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}Removing Left-Recursion\end{tabular}}
+\frametitle{Removing Left-Recursion}
The rule for numbers is directly left-recursive:
\begin{center}
\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1\;\;\;\;(\ldots)$
+$\meta{N}$ & $::=$ & $\meta{N} \cdot \meta{N} \;|\; 0 \;|\; 1\;\;\;\;(\ldots)$
\end{tabular}}
\end{center}
@@ -341,81 +328,79 @@
\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $N \cdot \alpha$\\
+$\meta{N}$ & $::=$ & $\meta{N} \cdot \alpha$\\
& $\;|\;$ & $\beta$\\
\\
\end{tabular}}
& {\Large$\Rightarrow$} &
\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $\beta \cdot N'$\\
-$N'$ & $\rightarrow$ & $\alpha \cdot N'$\\
+$\meta{N}$ & $::=$ & $\beta \cdot \meta{N}'$\\
+$\meta{N}'$ & $::=$ & $\alpha \cdot \meta{N}'$\\
& $\;|\;$ & $\epsilon$
\end{tabular}}
\end{tabular}
\end{center}\pause
-Which means
+Which means in this case:
\begin{center}
\bl{\begin{tabular}{lcl}
-$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1 \cdot N'$\\
-$N'$ & $\rightarrow$ & $N \cdot N' \;|\; \epsilon$\\
+$\meta{N}$ & $\rightarrow$ & $0 \cdot \meta{N}' \;|\; 1 \cdot \meta{N}'$\\
+$\meta{N}'$ & $\rightarrow$ & $\meta{N} \cdot \meta{N}' \;|\; \epsilon$\\
\end{tabular}}
\end{center}
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}Operator Precedences\end{tabular}}
+\frametitle{Operator Precedences}
To disambiguate
\begin{center}
\bl{\begin{tabular}{lcl}
-$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\
+$\meta{E}$ & $::=$ & $\meta{E} \cdot + \cdot \meta{E} \;|\;\meta{E} \cdot * \cdot \meta{E} \;|\;( \cdot \meta{E} \cdot ) \;|\;\meta{N}$ \\
\end{tabular}}
\end{center}
Decide on how many precedence levels, say\medskip\\
-\hspace{5mm}highest for \bl{$()$}, medium for \bl{*}, lowest for \bl{+}
+highest for \bl{$()$}, medium for \bl{*}, lowest for \bl{+}
\begin{center}
\bl{\begin{tabular}{lcl}
-$E_{low}$ & $\rightarrow$ & $E_{med} \cdot + \cdot E_{low} \;|\; E_{med}$ \\
-$E_{med}$ & $\rightarrow$ & $E_{hi} \cdot * \cdot E_{med} \;|\; E_{hi}$\\
-$E_{hi}$ & $\rightarrow$ & $( \cdot E_{low} \cdot ) \;|\;N$ \\
+$\meta{E}_{low}$ & $::=$ & $\meta{E}_{med} \cdot + \cdot \meta{E}_{low} \;|\; \meta{E}_{med}$ \\
+$\meta{E}_{med}$ & $::=$ & $\meta{E}_{hi} \cdot * \cdot \meta{E}_{med} \;|\; \meta{E}_{hi}$\\
+$\meta{E}_{hi}$ & $::=$ & $( \cdot \meta{E}_{low} \cdot ) \;|\;\meta{N}$ \\
\end{tabular}}
\end{center}\pause
\small What happens with \bl{$1 + 3 + 4$}?
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}Chomsky Normal Form\end{tabular}}
+\frametitle{Chomsky Normal Form}
All rules must be of the form
\begin{center}
-\bl{$A \rightarrow a$}
+\bl{$\meta{A} ::= a$}
\end{center}
or
\begin{center}
-\bl{$A \rightarrow B\cdot C$}
+\bl{$\meta{A} ::= \meta{B}\cdot \meta{C}$}
\end{center}
No rule can contain \bl{$\epsilon$}.
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -423,17 +408,17 @@
\frametitle{\begin{tabular}{c}$\epsilon$-Removal\end{tabular}}
\begin{enumerate}
-\item If \bl{$A\rightarrow \alpha \cdot B \cdot \beta$} and \bl{$B \rightarrow \epsilon$} are in the grammar,
-then add \bl{$A\rightarrow \alpha \cdot \beta$} (iterate if necessary).
-\item Throw out all \bl{$B \rightarrow \epsilon$}.
+\item If \bl{$A::= \alpha \cdot B \cdot \beta$} and \bl{$B ::= \epsilon$} are in the grammar,
+then add \bl{$A::= \alpha \cdot \beta$} (iterate if necessary).
+\item Throw out all \bl{$B ::= \epsilon$}.
\end{enumerate}
\small
\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
-$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'$\\
-$N'$ & $\rightarrow$ & $N \cdot N'\;|\;\epsilon$\\
+$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'$\\
+$N'$ & $::=$ & $N \cdot N'\;|\;\epsilon$\\
\\
\\
\\
@@ -442,11 +427,11 @@
\end{tabular}} &
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
\\
-$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
-$N'$ & $\rightarrow$ & $N \cdot N'\;|\;N\;|\;\epsilon$\\
+$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
+$N'$ & $::=$ & $N \cdot N'\;|\;N\;|\;\epsilon$\\
\\
-$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
-$N'$ & $\rightarrow$ & $N \cdot N'\;|\;N$\\
+$N$ & $::=$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
+$N'$ & $::=$ & $N \cdot N'\;|\;N$\\
\end{tabular}}
\end{tabular}
\end{center}
@@ -454,7 +439,7 @@
\pause\normalsize
\begin{center}
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
-$N$ & $\rightarrow$ & $0 \cdot N\;|\; 1\cdot N\;|\;0\;|\;1$\\
+$N$ & $::=$ & $0 \cdot N\;|\; 1\cdot N\;|\;0\;|\;1$\\
\end{tabular}}
\end{center}
@@ -464,39 +449,38 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}}
+\frametitle{CYK Algorithm}
If grammar is in Chomsky normalform \ldots
\begin{center}
\bl{\begin{tabular}{@ {}lcl@ {}}
-$S$ & $\rightarrow$ & $N\cdot P$ \\
-$P$ & $\rightarrow$ & $V\cdot N$ \\
-$N$ & $\rightarrow$ & $N\cdot N$ \\
-$N$ & $\rightarrow$ & $\texttt{students} \;|\; \texttt{Jeff} \;|\; \texttt{geometry} \;|\; \texttt{trains} $ \\
-$V$ & $\rightarrow$ & $\texttt{trains}$
+$\meta{S}$ & $::=$ & $\meta{N}\cdot \meta{P}$ \\
+$\meta{P}$ & $::=$ & $\meta{V}\cdot \meta{N}$ \\
+$\meta{N}$ & $::=$ & $\meta{N}\cdot \meta{N}$ \\
+$\meta{N}$ & $::=$ & $\texttt{students} \;|\; \texttt{Jeff} \;|\; \texttt{geometry} \;|\; \texttt{trains} $ \\
+$\meta{V}$ & $::=$ & $\texttt{trains}$
\end{tabular}}
\end{center}
\bl{\texttt{Jeff trains geometry students}}
-\end{frame}}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\mode<presentation>{
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
-\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}}
+\frametitle{CYK Algorithm}
\begin{itemize}
\item fastest possible algorithm for recognition problem
\item runtime is \bl{$O(n^3)$}\bigskip
-\item grammars need to be transferred into CNF
+\item grammars need to be transformed into CNF
\end{itemize}
-\end{frame}}
+\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -545,19 +529,19 @@
\begin{center}
\bl{\begin{tabular}{@{}lcl@{}}
-\textit{Stmt} & $\rightarrow$ & $\texttt{skip}$\\
+\textit{Stmt} & $::=$ & $\texttt{skip}$\\
& $|$ & \textit{Id}\;\texttt{:=}\;\textit{AExp}\\
& $|$ & \texttt{if}\; \textit{BExp} \;\texttt{then}\; \textit{Block} \;\texttt{else}\; \textit{Block}\\
& $|$ & \texttt{while}\; \textit{BExp} \;\texttt{do}\; \textit{Block}\\
& $|$ & \texttt{read}\;\textit{Id}\\
& $|$ & \texttt{write}\;\textit{Id}\\
& $|$ & \texttt{write}\;\textit{String}\medskip\\
-\textit{Stmts} & $\rightarrow$ & \textit{Stmt} \;\texttt{;}\; \textit{Stmts}\\
+\textit{Stmts} & $::=$ & \textit{Stmt} \;\texttt{;}\; \textit{Stmts}\\
& $|$ & \textit{Stmt}\medskip\\
-\textit{Block} & $\rightarrow$ & \texttt{\{}\,\textit{Stmts}\,\texttt{\}}\\
+\textit{Block} & $::=$ & \texttt{\{}\,\textit{Stmts}\,\texttt{\}}\\
& $|$ & \textit{Stmt}\medskip\\
-\textit{AExp} & $\rightarrow$ & \ldots\\
-\textit{BExp} & $\rightarrow$ & \ldots\\
+\textit{AExp} & $::=$ & \ldots\\
+\textit{BExp} & $::=$ & \ldots\\
\end{tabular}}
\end{center}
\end{frame}