--- a/hws/hw03.tex Sat Oct 11 13:50:36 2014 +0100
+++ b/hws/hw03.tex Sat Oct 11 13:54:18 2014 +0100
@@ -67,28 +67,7 @@
\end{tikzpicture}
\end{center}
-\item Given the following deterministic finite automaton over the
- alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
- case states can be merged, state clearly which states can be merged.
- \begin{center}
- \begin{tikzpicture}[scale=2, line width=0.7mm]
- \node[state, initial] (q0) at ( 0,1) {$q_0$};
- \node[state] (q1) at ( 1,1) {$q_1$};
- \node[state, accepting] (q4) at ( 2,1) {$q_4$};
- \node[state] (q2) at (0.5,0) {$q_2$};
- \node[state] (q3) at (1.5,0) {$q_3$};
- \path[->] (q0) edge node[above] {$0$} (q1)
- (q0) edge node[right] {$1$} (q2)
- (q1) edge node[above] {$0$} (q4)
- (q1) edge node[right] {$1$} (q2)
- (q2) edge node[above] {$0$} (q3)
- (q2) edge [loop below] node {$1$} ()
- (q3) edge node[left] {$0$} (q4)
- (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
- (q4) edge [loop right] node {$0, 1$} ();
- \end{tikzpicture}
- \end{center}
%\item Given the following deterministic finite automaton
%
@@ -124,6 +103,29 @@
\end{tikzpicture}
\end{center}
+\item Given the following deterministic finite automaton over the
+ alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
+ case states can be merged, state clearly which states can be merged.
+
+ \begin{center}
+ \begin{tikzpicture}[scale=2, line width=0.7mm]
+ \node[state, initial] (q0) at ( 0,1) {$q_0$};
+ \node[state] (q1) at ( 1,1) {$q_1$};
+ \node[state, accepting] (q4) at ( 2,1) {$q_4$};
+ \node[state] (q2) at (0.5,0) {$q_2$};
+ \node[state] (q3) at (1.5,0) {$q_3$};
+ \path[->] (q0) edge node[above] {$0$} (q1)
+ (q0) edge node[right] {$1$} (q2)
+ (q1) edge node[above] {$0$} (q4)
+ (q1) edge node[right] {$1$} (q2)
+ (q2) edge node[above] {$0$} (q3)
+ (q2) edge [loop below] node {$1$} ()
+ (q3) edge node[left] {$0$} (q4)
+ (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
+ (q4) edge [loop right] node {$0, 1$} ();
+ \end{tikzpicture}
+ \end{center}
+
\item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
\begin{center}