hws/hw03.tex
changeset 271 b9b54574ee41
parent 267 a1544b804d1e
child 292 7ed2a25dd115
--- a/hws/hw03.tex	Sat Oct 11 13:50:36 2014 +0100
+++ b/hws/hw03.tex	Sat Oct 11 13:54:18 2014 +0100
@@ -67,28 +67,7 @@
     \end{tikzpicture}
   \end{center}
 
-\item Given the following deterministic finite automaton over the
-  alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
-  case states can be merged, state clearly which states can be merged.
 
-  \begin{center}
-    \begin{tikzpicture}[scale=2, line width=0.7mm]
-      \node[state, initial]        (q0) at ( 0,1) {$q_0$};
-      \node[state]                    (q1) at ( 1,1) {$q_1$};
-      \node[state, accepting] (q4) at ( 2,1) {$q_4$};
-      \node[state]                    (q2) at (0.5,0) {$q_2$};
-      \node[state]                    (q3) at (1.5,0) {$q_3$};
-      \path[->] (q0) edge node[above] {$0$} (q1)
-                (q0) edge node[right] {$1$} (q2)
-                (q1) edge node[above] {$0$} (q4)
-                (q1) edge node[right] {$1$} (q2)
-                (q2) edge node[above] {$0$} (q3)
-                (q2) edge [loop below] node {$1$} ()
-                (q3) edge node[left] {$0$} (q4)
-                (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
-                (q4) edge [loop right] node {$0, 1$} ();
-    \end{tikzpicture}
-  \end{center}
 
 %\item Given the following deterministic finite automaton
 %
@@ -124,6 +103,29 @@
     \end{tikzpicture}
   \end{center}
 
+\item Given the following deterministic finite automaton over the
+  alphabet $\{0, 1\}$, find the corresponding minimal automaton. In
+  case states can be merged, state clearly which states can be merged.
+
+  \begin{center}
+    \begin{tikzpicture}[scale=2, line width=0.7mm]
+      \node[state, initial]        (q0) at ( 0,1) {$q_0$};
+      \node[state]                    (q1) at ( 1,1) {$q_1$};
+      \node[state, accepting] (q4) at ( 2,1) {$q_4$};
+      \node[state]                    (q2) at (0.5,0) {$q_2$};
+      \node[state]                    (q3) at (1.5,0) {$q_3$};
+      \path[->] (q0) edge node[above] {$0$} (q1)
+                (q0) edge node[right] {$1$} (q2)
+                (q1) edge node[above] {$0$} (q4)
+                (q1) edge node[right] {$1$} (q2)
+                (q2) edge node[above] {$0$} (q3)
+                (q2) edge [loop below] node {$1$} ()
+                (q3) edge node[left] {$0$} (q4)
+                (q3) edge [bend left=95, looseness = 2.2] node [left=2mm] {$1$} (q0)
+                (q4) edge [loop right] node {$0, 1$} ();
+    \end{tikzpicture}
+  \end{center}
+
 \item Given the following finite deterministic automaton over the alphabet $\{a, b\}$:
 
   \begin{center}