--- a/hws/hw04.tex Mon Oct 06 20:55:16 2014 +0100
+++ b/hws/hw04.tex Fri Oct 10 16:59:22 2014 +0100
@@ -4,81 +4,70 @@
\usepackage{tikz}
\usetikzlibrary{automata}
-
-%%\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
-
\begin{document}
\section*{Homework 4}
\begin{enumerate}
-\item Why is every finite set of strings a regular language?
-
-\item What is the language recognised by the regular expressions $(\varnothing^*)^*$.
\item If a regular expression $r$ does not contain any occurrence of $\varnothing$,
is it possible for $L(r)$ to be empty?
\item Define the tokens and regular expressions for a language
- consisting of numbers, left-parenthesis $($,
- right-parenthesis $)$, identifiers and the operations $+$,
- $-$ and $*$. Can the following strings in this language
- be lexed?
+ consisting of numbers, left-parenthesis $($, right-parenthesis $)$,
+ identifiers and the operations $+$, $-$ and $*$. Can the following
+ strings in this language be lexed?
-\begin{itemize}
+ \begin{itemize}
\item $(a + 3) * b$
\item $)()++ -33$
\item $(a / 3) * 3$
-\end{itemize}
+ \end{itemize}
-In case they can, can you give the corresponding token
-sequences.
+ In case they can, can you give the corresponding token
+ sequences.
\item Assume that $s^{-1}$ stands for the operation of reversing a
-string $s$. Given the following \emph{reversing} function on regular
-expressions
+ string $s$. Given the following \emph{reversing} function on regular
+ expressions
-\begin{center}
-\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
-$rev(\varnothing)$ & $\dn$ & $\varnothing$\\
-$rev(\epsilon)$ & $\dn$ & $\epsilon$\\
-$rev(c)$ & $\dn$ & $c$\\
-$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
-$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
-$rev(r^*)$ & $\dn$ & $rev(r)^*$\\
-\end{tabular}
-\end{center}
+ \begin{center}
+ \begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
+ $rev(\varnothing)$ & $\dn$ & $\varnothing$\\
+ $rev(\epsilon)$ & $\dn$ & $\epsilon$\\
+ $rev(c)$ & $\dn$ & $c$\\
+ $rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
+ $rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
+ $rev(r^*)$ & $\dn$ & $rev(r)^*$\\
+ \end{tabular}
+ \end{center}
-
-and the set
+ and the set
-\begin{center}
-$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
-\end{center}
+ \begin{center}
+ $Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
+ \end{center}
-prove whether
+ prove whether
-\begin{center}
-$L(rev(r)) = Rev (L(r))$
-\end{center}
+ \begin{center}
+ $L(rev(r)) = Rev (L(r))$
+ \end{center}
-holds.
-
-\item Give a regular expression over the alphabet $\{a,b\}$ recognising all strings
-that do not contain any substring $bb$ and end in $a$.
+ holds.
-\item Assume the delimiters for comments are \texttt{$\slash$*} and \texttt{*$\slash$}.
-Give a regular expression that can recognise comments
-of the form
+\item Assume the delimiters for comments are \texttt{$\slash$*} and
+ \texttt{*$\slash$}. Give a regular expression that can recognise
+ comments of the form
-\begin{center}
-\texttt{$\slash$*~\ldots{}~*$\slash$}
-\end{center}
+ \begin{center}
+ \texttt{$\slash$*~\ldots{}~*$\slash$}
+ \end{center}
-where the three dots stand for arbitrary characters, but not comment delimiters.
-(Hint: You can assume you are already given a regular expression written \texttt{ALL},
-that can recognise any character, and a regular expression \texttt{NOT} that recognises
-the complement of a regular expression.)
+ where the three dots stand for arbitrary characters, but not comment delimiters.
+ (Hint: You can assume you are already given a regular expression written \texttt{ALL},
+ that can recognise any character, and a regular expression \texttt{NOT} that recognises
+ the complement of a regular expression.)
@@ -92,14 +81,6 @@
%match the regular expression.
\end{enumerate}
-% explain what is a context-free grammar and the language it generates
-%
-%
-%
-%
-%
-% does (a + b)*b+ and (a*b+) + (b*b+) define the same language
-
\end{document}