--- a/coursework/cw01.tex Fri Sep 25 20:59:24 2015 +0100
+++ b/coursework/cw01.tex Mon Sep 28 23:47:34 2015 +0100
@@ -55,13 +55,15 @@
$L(r^+)$ & $\dn$ & $\bigcup_{1\le i}. L(r)^i$\\
$L(r^?)$ & $\dn$ & $L(r) \cup \{[]\}$\\
$L(r^{\{n,m\}})$ & $\dn$ & $\bigcup_{n\le i \le m}. L(r)^i$\\
-$L(\sim{}r)$ & $\dn$ & $\mathbb{A} - L(r)$
+$L(\sim{}r)$ & $\dn$ & $\Sigma^* - L(r)$
\end{tabular}
\end{center}
\noindent
-whereby in the last clause the set $\mathbb{A}$ stands for the set of
-\emph{all} strings. So $\sim{}r$ means `all the strings that $r$
+whereby in the last clause the set $\Sigma^*$ stands for the set of
+\emph{all} strings over the alphabet $\Sigma$ (in the implementation the
+alphabet can be just what is represented by, say, the type \pcode{char})).
+So $\sim{}r$ means `all the strings that $r$
cannot match'.
Be careful that your implementation of $nullable$ and $der$ satisfies
@@ -108,6 +110,14 @@
\end{tabular}
\end{center}
+\noindent
+Remember your definitions have to satisfy the two properties
+
+\begin{itemize}
+\item $nullable(r)$ if and only if $[]\in L(r)$
+\item $L(der\,c\,r)) = Der\,c\,(L(r))$
+\end{itemize}
+
\subsection*{Question 3 (marked with 1\%)}
Implement the following regular expression for email addresses
@@ -130,7 +140,7 @@
$\epsilon \cdot r$ & $\mapsto$ & $r$\\
$r + \varnothing$ & $\mapsto$ & $r$\\
$\varnothing + r$ & $\mapsto$ & $r$\\
-$r + r$ & $\mapsto$ & $r$ & (added on 12 October)\\
+$r + r$ & $\mapsto$ & $r$\\
\end{tabular}
\end{center}