--- a/hws/hw05.tex Wed Apr 06 12:18:54 2016 +0100
+++ b/hws/hw05.tex Wed Apr 06 15:55:01 2016 +0100
@@ -18,21 +18,21 @@
\item Consider the basic regular expressions
\begin{center}
-$r ::= \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
+$r ::= \ZERO \;|\; \ONE \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
\end{center}
-and suppose you want to show a property $P(r)$ for all regular
-expressions $r$ by structural induction. Write down which cases do you
-need to analyse. State clearly the induction hypotheses if applicable
-in a case.
+ and suppose you want to show a property $P(r)$ for all
+ regular expressions $r$ by structural induction. Write
+ down which cases do you need to analyse. State clearly
+ the induction hypotheses if applicable in a case.
-\item Define a regular expression, written $ALL$, that can match
-every string. This definition should be in terms of the
-following extended regular expressions:
+\item Define a regular expression, written $ALL$, that can
+ match every string. This definition should be in terms
+ of the following extended regular expressions:
\begin{center}
-$r ::= \varnothing \;|\;
- \epsilon \;|\;
+$r ::= \ZERO \;|\;
+ \ONE \;|\;
c \;|\;
r_1 + r_2 \;|\;
r_1 \cdot r_2 \;|\;
@@ -66,17 +66,17 @@
in terms of the usual basic regular expressions
\begin{center}
-$r ::= \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
+$r ::= \ZERO \;|\; \ONE \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
\end{center}
\item Give the regular expressions for lexing a language
-consisting of identifiers, left-parenthesis \texttt{(},
-right-parenthesis \texttt{)}, numbers that can be either
-positive or negative, and the operations \texttt{+},
-\texttt{-} and \texttt{*}.
+ consisting of identifiers, left-parenthesis \texttt{(},
+ right-parenthesis \texttt{)}, numbers that can be either
+ positive or negative, and the operations \texttt{+},
+ \texttt{-} and \texttt{*}.
-Decide whether the following strings
-can be lexed in this language?
+ Decide whether the following strings can be lexed in
+ this language?
\begin{enumerate}
\item \texttt{"(a3+3)*b"}
@@ -88,14 +88,15 @@
Observe the maximal munch rule and the priorities of your regular
expressions that make the process of lexing unambiguous.)
-\item (Optional) Recall the definitions for $Der$ and $der$ from the lectures.
-Prove by induction on $r$ the property that
+\item (Optional) Recall the definitions for $Der$ and $der$
+ from the lectures. Prove by induction on $r$ the
+ property that
\[
L(der\,c\,r) = Der\,c\,(L(r))
\]
-holds.
+ holds.
\end{enumerate}