--- a/hw02.tex Sat Jun 15 09:11:11 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,36 +0,0 @@
-\documentclass{article}
-\usepackage{charter}
-\usepackage{hyperref}
-\usepackage{amssymb}
-\usepackage{amsmath}
-
-\begin{document}
-
-\section*{Homework 2}
-
-\begin{enumerate}
-\item Give regular expressions for (a) decimal numbers and for (b) binary numbers.
-(Hint: Observe that the empty string is not a number. Also observe that leading 0s
-are normally not written.)
-
-\item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and
-$(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$.
-
-\item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to
-$a$ and $b$. Is $r$ nullable?
-
-\item What is a regular language?
-
-\item Prove that for all regular expressions $r$ we have
-\begin{center}
-$\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$
-\end{center}
-
-\end{enumerate}
-
-\end{document}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: t
-%%% End: