--- a/progs/Matcher2.thy Tue Oct 18 19:14:33 2016 +0100
+++ b/progs/Matcher2.thy Tue Oct 18 20:39:54 2016 +0100
@@ -359,9 +359,8 @@
done
lemma L_der_NTIMES:
- shows "L(der c (NTIMES r n)) = (if n = 0 then {} else if nullable r then
- L(SEQ (der c r) (UPNTIMES r (n - 1)))
- else L(SEQ (der c r) (NTIMES r (n - 1))))"
+ shows "L(der c (NTIMES r n)) = L (if n = 0 then NULL else if nullable r then
+ SEQ (der c r) (UPNTIMES r (n - 1)) else SEQ (der c r) (NTIMES r (n - 1)))"
apply(induct n)
apply(simp)
apply(simp)
@@ -376,6 +375,9 @@
apply(simp)
by (metis Suc_pred atMost_iff le_Suc_eq)
+lemma "L(der c (UPNTIMES r 0)) = {}"
+by simp
+
lemma "L(der c (UPNTIMES r (Suc n))) = L(SEQ (der c r) (UPNTIMES r n))"
using assms
proof(induct n)