--- a/progs/nfa2.scala Sat Jul 04 16:58:12 2020 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,242 +0,0 @@
-// NFAs and Thompson's construction
-
-// helper function for recording time
-def time_needed[T](i: Int, code: => T) = {
- val start = System.nanoTime()
- for (j <- 1 to i) code
- val end = System.nanoTime()
- (end - start)/(i * 1.0e9)
-}
-
-
-// state nodes
-abstract class State
-type States = Set[State]
-
-case class IntState(i: Int) extends State
-
-object NewState {
- var counter = 0
-
- def apply() : IntState = {
- counter += 1;
- new IntState(counter - 1)
- }
-}
-
-
-case class NFA(states: States,
- start: State,
- delta: (State, Char) => States,
- eps: State => States,
- fins: States) {
-
- def epsclosure(qs: States) : States = {
- val ps = qs ++ qs.flatMap(eps(_))
- if (qs == ps) ps else epsclosure(ps)
- }
-
- def deltas(qs: States, s: List[Char]) : States = s match {
- case Nil => epsclosure(qs)
- case c::cs => deltas(epsclosure(epsclosure(qs).flatMap (delta (_, c))), cs)
- }
-
- def accepts(s: String) : Boolean =
- deltas(Set(start), s.toList) exists (fins contains (_))
-}
-
-// A small example NFA from the lectures
-val Q0 = NewState()
-val Q1 = NewState()
-val Q2 = NewState()
-
-val delta : (State, Char) => States = {
- case (Q0, 'a') => Set(Q0)
- case (Q1, 'a') => Set(Q1)
- case (Q2, 'b') => Set(Q2)
- case (_, _) => Set ()
-}
-
-val eps : State => States = {
- case Q0 => Set(Q1, Q2)
- case _ => Set()
-}
-
-val NFA1 = NFA(Set(Q0, Q1, Q2), Q0, delta, eps, Set(Q2))
-
-NFA1.accepts("aa")
-NFA1.accepts("aaaaa")
-NFA1.accepts("aaaaabbb")
-NFA1.accepts("aaaaabbbaaa")
-NFA1.accepts("ac")
-
-
-// explicit construction of some NFAs; used in
-// Thompson's construction
-
-// NFA that does not accept any string
-def NFA_NULL() : NFA = {
- val Q = NewState()
- NFA(Set(Q), Q, { case (_, _) => Set() }, { case _ => Set() }, Set())
-}
-
-// NFA that accepts the empty string
-def NFA_EMPTY() : NFA = {
- val Q = NewState()
- NFA(Set(Q), Q, { case (_, _) => Set() }, { case _ => Set() }, Set(Q))
-}
-
-// NFA that accepts the string "c"
-def NFA_CHAR(c: Char) : NFA = {
- val Q1 = NewState()
- val Q2 = NewState()
- NFA(Set(Q1, Q2),
- Q1,
- { case (Q1, d) if (c == d) => Set(Q2)
- case (_, _) => Set() },
- { case _ => Set() },
- Set(Q2))
-}
-
-// alternative of two NFAs
-def NFA_ALT(nfa1: NFA, nfa2: NFA) : NFA = {
- val Q = NewState()
- NFA(Set(Q) ++ nfa1.states ++ nfa2.states,
- Q,
- { case (q, c) if (nfa1.states contains q) => nfa1.delta(q, c)
- case (q, c) if (nfa2.states contains q) => nfa2.delta(q, c)
- case (_, _) => Set() },
- { case Q => Set(nfa1.start, nfa2.start)
- case q if (nfa1.states contains q) => nfa1.eps(q)
- case q if (nfa2.states contains q) => nfa2.eps(q)
- case _ => Set() },
- nfa1.fins ++ nfa2.fins)
-}
-
-// sequence of two NFAs
-def NFA_SEQ(nfa1: NFA, nfa2: NFA) : NFA = {
- NFA(nfa1.states ++ nfa2.states,
- nfa1.start,
- { case (q, c) if (nfa1.states contains q) => nfa1.delta(q, c)
- case (q, c) if (nfa2.states contains q) => nfa2.delta(q, c)
- case (_, _) => Set() },
- { case q if (nfa1.fins contains q) => nfa1.eps(q) ++ Set(nfa2.start)
- case q if (nfa1.states contains q) => nfa1.eps(q)
- case q if (nfa2.states contains q) => nfa2.eps(q)
- case _ => Set() },
- nfa2.fins)
-}
-
-// star of an NFA
-def NFA_STAR(nfa: NFA) : NFA = {
- val Q = NewState()
- NFA(Set(Q) ++ nfa.states,
- Q,
- nfa.delta,
- { case Q => Set(nfa.start)
- case q if (nfa.fins contains q) => nfa.eps(q) ++ Set(Q)
- case q if (nfa.states contains q) => nfa.eps(q)
- case _ => Set() },
- Set(Q))
-}
-
-
-// regular expressions used for Thompson's construction
-abstract class Rexp
-
-case object NULL extends Rexp
-case object EMPTY extends Rexp
-case class CHAR(c: Char) extends Rexp
-case class ALT(r1: Rexp, r2: Rexp) extends Rexp
-case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
-case class STAR(r: Rexp) extends Rexp
-
-// some convenience for typing in regular expressions
-def charlist2rexp(s : List[Char]) : Rexp = s match {
- case Nil => EMPTY
- case c::Nil => CHAR(c)
- case c::s => SEQ(CHAR(c), charlist2rexp(s))
-}
-implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
-
-
-
-def thompson (r: Rexp) : NFA = r match {
- case NULL => NFA_NULL()
- case EMPTY => NFA_EMPTY()
- case CHAR(c) => NFA_CHAR(c)
- case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2))
- case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2))
- case STAR(r1) => NFA_STAR(thompson(r1))
-}
-
-// some examples for Thompson's
-val A = thompson(CHAR('a'))
-
-println(A.accepts("a")) // true
-println(A.accepts("c")) // false
-println(A.accepts("aa")) // false
-
-val B = thompson(ALT("ab","ac"))
-
-println(B.accepts("ab")) // true
-println(B.accepts("ac")) // true
-println(B.accepts("bb")) // false
-println(B.accepts("aa")) // false
-
-val C = thompson(STAR("ab"))
-
-println(C.accepts("")) // true
-println(C.accepts("a")) // false
-println(C.accepts("ababab")) // true
-println(C.accepts("ab")) // true
-println(C.accepts("ac")) // false
-println(C.accepts("bb")) // false
-println(C.accepts("aa")) // false
-
-// regular expression matcher using Thompson's
-def matcher(r: Rexp, s: String) : Boolean = thompson(r).accepts(s)
-
-
-//optional
-def OPT(r: Rexp) = ALT(r, EMPTY)
-
-//n-times
-def NTIMES(r: Rexp, n: Int) : Rexp = n match {
- case 0 => EMPTY
- case 1 => r
- case n => SEQ(r, NTIMES(r, n - 1))
-}
-
-// evil regular exproession
-def EVIL(n: Int) = SEQ(NTIMES(OPT("a"), n), NTIMES("a", n))
-
-// test harness for the matcher
-for (i <- 0 to 100 by 5) {
- println(i + ": " + "%.5f".format(time_needed(1, matcher(EVIL(i), "a" * i))))
-}
-
-
-// regular expression matching via search and backtracking
-def accepts2(nfa: NFA, s: String) : Boolean = {
-
- def search(q: State, s: List[Char]) : Boolean = s match {
- case Nil => nfa.fins contains (q)
- case c::cs =>
- (nfa.delta(q, c) exists (search(_, cs))) ||
- (nfa.eps(q) exists (search(_, c::cs)))
- }
-
- search(nfa.start, s.toList)
-}
-
-def matcher2(r: Rexp, s: String) : Boolean = accepts2(thompson(r), s)
-
-// test harness for the backtracking matcher
-for (i <- 0 to 20 by 1) {
- println(i + ": " + "%.5f".format(time_needed(1, matcher2(EVIL(i), "a" * i))))
-}
-
-
-
-