|
1 theory Matcher2 |
|
2 imports "Main" |
|
3 begin |
|
4 |
|
5 section {* Regular Expressions *} |
|
6 |
|
7 datatype rexp = |
|
8 NULL |
|
9 | EMPTY |
|
10 | CHAR char |
|
11 | SEQ rexp rexp |
|
12 | ALT rexp rexp |
|
13 | STAR rexp |
|
14 | NOT rexp |
|
15 | PLUS rexp |
|
16 | OPT rexp |
|
17 | NTIMES rexp nat |
|
18 | NMTIMES rexp nat nat |
|
19 |
|
20 fun M :: "rexp \<Rightarrow> nat" |
|
21 where |
|
22 "M (NULL) = 0" |
|
23 | "M (EMPTY) = 0" |
|
24 | "M (CHAR char) = 0" |
|
25 | "M (SEQ r1 r2) = Suc ((M r1) + (M r2))" |
|
26 | "M (ALT r1 r2) = Suc ((M r1) + (M r2))" |
|
27 | "M (STAR r) = Suc (M r)" |
|
28 | "M (NOT r) = Suc (M r)" |
|
29 | "M (PLUS r) = Suc (M r)" |
|
30 | "M (OPT r) = Suc (M r)" |
|
31 | "M (NTIMES r n) = Suc (M r) * 2 * (Suc n)" |
|
32 | "M (NMTIMES r n m) = Suc (M r) * 2 * (Suc n + Suc m)" |
|
33 |
|
34 section {* Sequential Composition of Sets *} |
|
35 |
|
36 definition |
|
37 Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
38 where |
|
39 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
40 |
|
41 text {* Two Simple Properties about Sequential Composition *} |
|
42 |
|
43 lemma seq_empty [simp]: |
|
44 shows "A ;; {[]} = A" |
|
45 and "{[]} ;; A = A" |
|
46 by (simp_all add: Seq_def) |
|
47 |
|
48 lemma seq_null [simp]: |
|
49 shows "A ;; {} = {}" |
|
50 and "{} ;; A = {}" |
|
51 by (simp_all add: Seq_def) |
|
52 |
|
53 lemma seq_union: |
|
54 shows "A ;; (B \<union> C) = A ;; B \<union> A ;; C" |
|
55 by (auto simp add: Seq_def) |
|
56 |
|
57 lemma seq_Union: |
|
58 shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)" |
|
59 by (auto simp add: Seq_def) |
|
60 |
|
61 lemma seq_empty_in [simp]: |
|
62 "[] \<in> A ;; B \<longleftrightarrow> ([] \<in> A \<and> [] \<in> B)" |
|
63 by (simp add: Seq_def) |
|
64 |
|
65 section {* Kleene Star for Sets *} |
|
66 |
|
67 inductive_set |
|
68 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
69 for A :: "string set" |
|
70 where |
|
71 start[intro]: "[] \<in> A\<star>" |
|
72 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
73 |
|
74 |
|
75 text {* A Standard Property of Star *} |
|
76 |
|
77 lemma star_cases: |
|
78 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
79 unfolding Seq_def |
|
80 by (auto) (metis Star.simps) |
|
81 |
|
82 lemma star_decomp: |
|
83 assumes a: "c # x \<in> A\<star>" |
|
84 shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>" |
|
85 using a |
|
86 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
87 (auto simp add: append_eq_Cons_conv) |
|
88 |
|
89 section {* Power for Sets *} |
|
90 |
|
91 fun |
|
92 pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101) |
|
93 where |
|
94 "A \<up> 0 = {[]}" |
|
95 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
96 |
|
97 |
|
98 lemma pow_empty [simp]: |
|
99 shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)" |
|
100 by (induct n) (auto) |
|
101 |
|
102 |
|
103 section {* Semantics of Regular Expressions *} |
|
104 |
|
105 fun |
|
106 L :: "rexp \<Rightarrow> string set" |
|
107 where |
|
108 "L (NULL) = {}" |
|
109 | "L (EMPTY) = {[]}" |
|
110 | "L (CHAR c) = {[c]}" |
|
111 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
112 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
113 | "L (STAR r) = (L r)\<star>" |
|
114 | "L (NOT r) = UNIV - (L r)" |
|
115 | "L (PLUS r) = (L r) ;; ((L r)\<star>)" |
|
116 | "L (OPT r) = (L r) \<union> {[]}" |
|
117 | "L (NTIMES r n) = (L r) \<up> n" |
|
118 | "L (NMTIMES r n m) = (\<Union>i\<in> {n..n+m} . ((L r) \<up> i))" |
|
119 |
|
120 |
|
121 section {* The Matcher *} |
|
122 |
|
123 fun |
|
124 nullable :: "rexp \<Rightarrow> bool" |
|
125 where |
|
126 "nullable (NULL) = False" |
|
127 | "nullable (EMPTY) = True" |
|
128 | "nullable (CHAR c) = False" |
|
129 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
130 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
131 | "nullable (STAR r) = True" |
|
132 | "nullable (NOT r) = (\<not>(nullable r))" |
|
133 | "nullable (PLUS r) = (nullable r)" |
|
134 | "nullable (OPT r) = True" |
|
135 | "nullable (NTIMES r n) = (if n = 0 then True else nullable r)" |
|
136 | "nullable (NMTIMES r n m) = (if n = 0 then True else nullable r)" |
|
137 |
|
138 function |
|
139 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
140 where |
|
141 "der c (NULL) = NULL" |
|
142 | "der c (EMPTY) = NULL" |
|
143 | "der c (CHAR d) = (if c = d then EMPTY else NULL)" |
|
144 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
145 | "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)" |
|
146 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
147 | "der c (NOT r) = NOT(der c r)" |
|
148 | "der c (PLUS r) = SEQ (der c r) (STAR r)" |
|
149 | "der c (OPT r) = der c r" |
|
150 | "der c (NTIMES r 0) = NULL" |
|
151 | "der c (NTIMES r (Suc n)) = der c (SEQ r (NTIMES r n))" |
|
152 | "der c (NMTIMES r 0 0) = NULL" |
|
153 | "der c (NMTIMES r 0 (Suc m)) = ALT (der c (NTIMES r (Suc m))) (der c (NMTIMES r 0 m))" |
|
154 | "der c (NMTIMES r (Suc n) m) = der c (SEQ r (NMTIMES r n m))" |
|
155 by pat_completeness auto |
|
156 |
|
157 termination der |
|
158 apply(relation "measure (\<lambda>(c, r). M r)") |
|
159 apply(simp_all) |
|
160 done |
|
161 |
|
162 fun |
|
163 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
164 where |
|
165 "ders [] r = r" |
|
166 | "ders (c # s) r = ders s (der c r)" |
|
167 |
|
168 fun |
|
169 matcher :: "rexp \<Rightarrow> string \<Rightarrow> bool" |
|
170 where |
|
171 "matcher r s = nullable (ders s r)" |
|
172 |
|
173 |
|
174 section {* Correctness Proof of the Matcher *} |
|
175 |
|
176 lemma nullable_correctness: |
|
177 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
178 by(induct r) (auto simp add: Seq_def) |
|
179 |
|
180 |
|
181 section {* Left-Quotient of a Set *} |
|
182 |
|
183 definition |
|
184 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
185 where |
|
186 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
187 |
|
188 lemma Der_null [simp]: |
|
189 shows "Der c {} = {}" |
|
190 unfolding Der_def |
|
191 by auto |
|
192 |
|
193 lemma Der_empty [simp]: |
|
194 shows "Der c {[]} = {}" |
|
195 unfolding Der_def |
|
196 by auto |
|
197 |
|
198 lemma Der_char [simp]: |
|
199 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
200 unfolding Der_def |
|
201 by auto |
|
202 |
|
203 lemma Der_union [simp]: |
|
204 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
205 unfolding Der_def |
|
206 by auto |
|
207 |
|
208 lemma Der_insert_nil [simp]: |
|
209 shows "Der c (insert [] A) = Der c A" |
|
210 unfolding Der_def |
|
211 by auto |
|
212 |
|
213 lemma Der_seq [simp]: |
|
214 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
215 unfolding Der_def Seq_def |
|
216 by (auto simp add: Cons_eq_append_conv) |
|
217 |
|
218 lemma Der_star [simp]: |
|
219 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
220 proof - |
|
221 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
222 by (simp only: star_cases[symmetric]) |
|
223 also have "... = Der c (A ;; A\<star>)" |
|
224 by (simp only: Der_union Der_empty) (simp) |
|
225 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
226 by simp |
|
227 also have "... = (Der c A) ;; A\<star>" |
|
228 unfolding Seq_def Der_def |
|
229 by (auto dest: star_decomp) |
|
230 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
231 qed |
|
232 |
|
233 lemma Der_UNIV [simp]: |
|
234 "Der c (UNIV - A) = UNIV - Der c A" |
|
235 unfolding Der_def |
|
236 by (auto) |
|
237 |
|
238 lemma Der_pow [simp]: |
|
239 shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})" |
|
240 unfolding Der_def |
|
241 by(auto simp add: Cons_eq_append_conv Seq_def) |
|
242 |
|
243 |
|
244 lemma Der_UNION [simp]: |
|
245 shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))" |
|
246 by (auto simp add: Der_def) |
|
247 |
|
248 lemma test: |
|
249 "(\<Union> x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union> x\<le>m. B x))" |
|
250 by (metis UN_insert atMost_Suc) |
|
251 |
|
252 lemma yy: |
|
253 "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))" |
|
254 by (metis UN_extend_simps(10) image_Suc_atLeastAtMost) |
|
255 |
|
256 lemma uu: |
|
257 "(Suc n) + m = Suc (n + m)" |
|
258 by simp |
|
259 |
|
260 lemma der_correctness: |
|
261 shows "L (der c r) = Der c (L r)" |
|
262 apply(induct rule: der.induct) |
|
263 apply(simp_all add: nullable_correctness)[12] |
|
264 apply(simp only: L.simps der.simps) |
|
265 apply(simp only: Der_UNION) |
|
266 apply(simp del: pow.simps Der_pow) |
|
267 apply(simp only: atLeast0AtMost) |
|
268 apply(simp only: test) |
|
269 apply(simp only: L.simps der.simps) |
|
270 apply(simp only: Der_UNION) |
|
271 apply(simp only: yy add_Suc) |
|
272 apply(simp only: seq_Union) |
|
273 apply(simp only: Der_UNION) |
|
274 apply(simp only: pow.simps) |
|
275 done |
|
276 |
|
277 lemma matcher_correctness: |
|
278 shows "matcher r s \<longleftrightarrow> s \<in> L r" |
|
279 by (induct s arbitrary: r) |
|
280 (simp_all add: nullable_correctness der_correctness Der_def) |
|
281 |
|
282 |
|
283 end |