|     84 \noindent |     84 \noindent | 
|     85 According to 1.~above we need to prove $P(\ZERO)$, $P(\ONE)$ and $P(d)$. Lets do this in turn. |     85 According to 1.~above we need to prove $P(\ZERO)$, $P(\ONE)$ and $P(d)$. Lets do this in turn. | 
|     86  |     86  | 
|     87 \begin{itemize} |     87 \begin{itemize} | 
|     88 \item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$  |     88 \item First Case: $P(\ZERO)$ is $L(der\,c\,\ZERO) = Der\,c\,(L(\ZERO))$ (a). We have $der\,c\,\ZERO = \ZERO$  | 
|     89 and $L(\ZERO) = \ZERO$. We also have $Der\,c\,\ZERO = \ZERO$. Hence we have $\ZERO = \ZERO$ in (a).  |     89 and $L(\ZERO) = \emptyset$. We also have $Der\,c\,L(\ZERO) = L(\ZERO$). Hence we have $\emptyset = \emptyset$ in (a).  | 
|     90  |     90  | 
|     91 \item Second  Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$, |     91 \item Second  Case: $P(\ONE)$ is $L(der\,c\,\ONE) = Der\,c\,(L(\ONE))$ (b). We have $der\,c\,\ONE = \ZERO$, | 
|     92 $L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \ZERO$. Hence we have  |     92 $L(\ZERO) = \ZERO$ and $L(\ONE) = \{\texttt{""}\}$. We also have $Der\,c\,\{\texttt{""}\} = \emptyset$. Hence we have  | 
|     93 $\ZERO = \ZERO$ in (b).  |     93 $\emptyset = \emptyset$ in (b).  | 
|     94  |     94  | 
|     95 \item Third  Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$.  |     95 \item Third  Case: $P(d)$ is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases $d = c$ and $d \not= c$.  | 
|     96  |     96  | 
|     97 $d = c$: We have $der\,c\,c = \ONE$ and $L(\ONE) = \{\texttt{""}\}$.  |     97 $d = c$: We have $der\,c\,c = \ONE$ and $L(\ONE) = \{\texttt{""}\}$.  | 
|     98 We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have  |     98 We also have $L(c) = \{\texttt{"}c\texttt{"}\}$ and $Der\,c\,\{\texttt{"}c\texttt{"}\} = \{\texttt{""}\}$. Hence we have  | 
|     99 $\{\texttt{""}\} = \{\texttt{""}\}$ in (c).  |     99 $\{\texttt{""}\} = \{\texttt{""}\}$ in (c).  | 
|    100  |    100  | 
|    101 $d \not=c$: We have $der\,c\,d = \ZERO$. |    101 $d \not=c$: We have $der\,c\,d = \ZERO$. | 
|    102 We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \ZERO$. Hence we have  |    102 We also have $Der\,c\,\{\texttt{"}d\texttt{"}\} = \emptyset$. Hence we have  | 
|    103 $\ZERO = \ZERO$  in (c).  |    103 $\emptyset = \emptyset$  in (c).  | 
|    104 \end{itemize} |    104 \end{itemize} | 
|    105  |    105  | 
|    106 \noindent |    106 \noindent | 
|    107 These were the easy base cases. Now come the inductive cases. |    107 These were the easy base cases. Now come the inductive cases. | 
|    108  |    108  | 
|    190  |    190  | 
|    191 \begin{center} |    191 \begin{center} | 
|    192 $Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$ |    192 $Der\,c\,(L(r^*)) = Der\,c\,(L(r)^0 \cup \bigcup_{n \ge 1} L(r)^n) = (Der\,c\,L(r)^0) \cup Der\,c\,(\bigcup_{n \ge 1} L(r)^n)$ | 
|    193 \end{center} |    193 \end{center} | 
|    194  |    194  | 
|    195 The first union ``disappears'' since $Der\,c\,(L(r)^0) = \ZERO$. |    195 The first union ``disappears'' since $Der\,c\,(L(r)^0) = \emptyset$. | 
|    196  |    196  | 
|    197  |    197  | 
|    198 \end{document} |    198 \end{document} | 
|    199  |    199  | 
|    200 %%% Local Variables:  |    200 %%% Local Variables:  |