1267 \begin{frame}[c] | 
  1267 \begin{frame}[c] | 
  1268   | 
  1268   | 
  1269 \begin{center} | 
  1269 \begin{center} | 
  1270 \begin{tikzpicture}[scale=2,>=stealth',very thick, | 
  1270 \begin{tikzpicture}[scale=2,>=stealth',very thick, | 
  1271                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] | 
  1271                              every state/.style={minimum size=0pt,draw=blue!50,very thick,fill=blue!20},] | 
  1272   \only<1->{\node[state, initial]        (q0) at ( 0,1) {$\mbox{Q}_0$};} | 
  1272   \only<1->{\node[state, initial,accepting]        (q0) at ( 0,1) {$\mbox{Q}_0$};} | 
  1273   \only<1->{\node[state]                    (q1) at ( 1,1) {$\mbox{Q}_1$};} | 
  1273   \only<1->{\node[state,accepting]                    (q1) at ( 1,1) {$\mbox{Q}_1$};} | 
  1274   \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};} | 
  1274   \only<1->{\node[state] (q2) at ( 2,1) {$\mbox{Q}_2$};} | 
  1275   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) | 
  1275   \path[->] (q0) edge[bend left] node[above] {\alert{$a$}} (q1) | 
  1276                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0) | 
  1276                   (q1) edge[bend left] node[above] {\alert{$b$}} (q0) | 
  1277                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0) | 
  1277                   (q2) edge[bend left=50] node[below] {\alert{$b$}} (q0) | 
  1278                   (q1) edge node[above] {\alert{$a$}} (q2) | 
  1278                   (q1) edge node[above] {\alert{$a$}} (q2) | 
  1325   | 
  1325   | 
  1326 \end{tabular} | 
  1326 \end{tabular} | 
  1327 \end{center} | 
  1327 \end{center} | 
  1328 }  | 
  1328 }  | 
  1329   | 
  1329   | 
  1330 \onslide<3->{ | 
  1330   | 
         | 
  1331 \only<3-9>{\small | 
         | 
  1332 \begin{textblock}{6}(1,0.8) | 
         | 
  1333 \begin{bubble}[6.7cm] | 
         | 
  1334 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1335 \multicolumn{3}{@{}l}{substitute \bl{$\mbox{Q}_1$} into \bl{$\mbox{Q}_0$} \& \bl{$\mbox{Q}_2$}:}\\     | 
         | 
  1336 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,b + \mbox{Q}_0\,a\,b +  \mbox{Q}_2\,b + \ONE$}\\ | 
         | 
  1337 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} | 
         | 
  1338 \end{tabular} | 
         | 
  1339 \end{bubble} | 
         | 
  1340 \end{textblock}} | 
         | 
  1341   | 
         | 
  1342 \only<4-9>{\small | 
         | 
  1343 \begin{textblock}{6}(2,4.15) | 
         | 
  1344 \begin{bubble}[6.7cm] | 
         | 
  1345 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1346 \multicolumn{3}{@{}l}{simplifying \bl{$\mbox{Q}_0$}:}\\     | 
         | 
  1347 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ | 
         | 
  1348 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a + \mbox{Q}_2\,a$} | 
         | 
  1349 \end{tabular} | 
         | 
  1350 \end{bubble} | 
         | 
  1351 \end{textblock}} | 
         | 
  1352   | 
         | 
  1353 \only<6-9>{\small | 
         | 
  1354 \begin{textblock}{6}(3,7.55) | 
         | 
  1355 \begin{bubble}[6.7cm] | 
         | 
  1356 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1357   \multicolumn{3}{@{}l}{Arden for \bl{$\mbox{Q}_2$}:}\\     | 
         | 
  1358 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b) + \mbox{Q}_2\,b + \ONE$}\\ | 
         | 
  1359 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$\mbox{Q}_0\,a\,a\,(a^*)$} | 
         | 
  1360 \end{tabular} | 
         | 
  1361 \end{bubble} | 
         | 
  1362 \end{textblock}} | 
         | 
  1363   | 
         | 
  1364 \only<7-9>{\small | 
         | 
  1365 \begin{textblock}{6}(4,10.9) | 
         | 
  1366 \begin{bubble}[7.5cm] | 
         | 
  1367 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1368   \multicolumn{3}{@{}l}{Substitute \bl{$\mbox{Q}_2$} and simplify:}\\     | 
         | 
  1369 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$\mbox{Q}_0\,(b + a\,b + a\,a\,(a^*)\,b) + \ONE$}\\ | 
         | 
  1370 \end{tabular} | 
         | 
  1371 \end{bubble} | 
         | 
  1372 \end{textblock}} | 
         | 
  1373   | 
         | 
  1374 \only<8-9>{\small | 
         | 
  1375 \begin{textblock}{6}(5,13.4) | 
         | 
  1376 \begin{bubble}[7.5cm] | 
         | 
  1377 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1378   \multicolumn{3}{@{}l}{Arden again for \bl{$\mbox{Q}_0$}:}\\     | 
         | 
  1379 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ | 
         | 
  1380 \end{tabular} | 
         | 
  1381 \end{bubble} | 
         | 
  1382 \end{textblock}} | 
         | 
  1383   | 
         | 
  1384   | 
         | 
  1385 \only<9-10>{\small | 
         | 
  1386 \begin{textblock}{6}(6,11.5) | 
         | 
  1387 \begin{bubble}[6.7cm] | 
         | 
  1388 \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} | 
         | 
  1389 \multicolumn{3}{@{}l}{Finally:}\\     | 
         | 
  1390 \bl{$\mbox{Q}_0$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*$}\\ | 
         | 
  1391 \bl{$\mbox{Q}_1$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a$}\\ | 
         | 
  1392 \bl{$\mbox{Q}_2$} & \bl{$=$} & \bl{$(b + a\,b + a\,a\,(a^*)\,b)^*\,a\,a\,(a^*)$}\\ | 
         | 
  1393 \end{tabular} | 
         | 
  1394 \end{bubble} | 
         | 
  1395 \end{textblock}} | 
         | 
  1396   | 
         | 
  1397   | 
         | 
  1398   | 
         | 
  1399   | 
         | 
  1400   | 
         | 
  1401 \only<5-6>{ | 
         | 
  1402 \begin{textblock}{6}(0.7,11.9) | 
         | 
  1403 \begin{bubble}[6.7cm] | 
  1331 Arden's Lemma:  | 
  1404 Arden's Lemma:  | 
  1332 \begin{center} | 
  1405 \begin{center} | 
  1333 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} | 
  1406 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} | 
  1334 \end{center} | 
  1407 \end{center} | 
  1335 }  | 
  1408 \end{bubble} | 
         | 
  1409 \end{textblock}} | 
         | 
  1410   | 
         | 
  1411 \only<8>{ | 
         | 
  1412 \begin{textblock}{6}(1.1,7.8) | 
         | 
  1413 \begin{bubble}[6.7cm] | 
         | 
  1414 Arden's Lemma:  | 
         | 
  1415 \begin{center} | 
         | 
  1416 If \bl{$q = q\,r + s$}\; then\; \bl{$q = s\, r^*$} | 
         | 
  1417 \end{center} | 
         | 
  1418 \end{bubble} | 
         | 
  1419 \end{textblock}} | 
  1336   | 
  1420   | 
  1337 \end{frame} | 
  1421 \end{frame} | 
  1338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1422 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1339   | 
  1423   | 
  1340 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1424 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1374 \end{frame} | 
  1458 \end{frame} | 
  1375 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1459 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1376   | 
  1460   | 
  1377   | 
  1461   | 
  1378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1462 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1379 \begin{frame}[c] | 
  1463 %\begin{frame}[c] | 
  1380   | 
  1464 %  | 
  1381 Given the function   | 
  1465 %Given the function   | 
  1382   | 
  1466 %  | 
  1383 \begin{center} | 
  1467 %\begin{center} | 
  1384 \bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} | 
  1468 %\bl{\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l} | 
  1385 $rev(\ZERO)$   & $\dn$ & $\ZERO$\\  | 
  1469 %$rev(\ZERO)$   & $\dn$ & $\ZERO$\\  | 
  1386 $rev(\ONE)$         & $\dn$ & $\ONE$\\  | 
  1470 %$rev(\ONE)$         & $\dn$ & $\ONE$\\  | 
  1387 $rev(c)$                      & $\dn$ & $c$\\  | 
  1471 %$rev(c)$                      & $\dn$ & $c$\\  | 
  1388 $rev(r_1 + r_2)$        & $\dn$ & $rev(r_1) + rev(r_2)$\\  | 
  1472 %$rev(r_1 + r_2)$        & $\dn$ & $rev(r_1) + rev(r_2)$\\  | 
  1389 $rev(r_1 \cdot r_2)$  & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\  | 
  1473 %$rev(r_1 \cdot r_2)$  & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\  | 
  1390 $rev(r^*)$                   & $\dn$ & $rev(r)^*$\\  | 
  1474 %$rev(r^*)$                   & $\dn$ & $rev(r)^*$\\  | 
  1391 \end{tabular}} | 
  1475 %\end{tabular}} | 
  1392 \end{center} | 
  1476 %\end{center} | 
  1393   | 
  1477 %  | 
  1394   | 
  1478 %  | 
  1395 and the set  | 
  1479 %and the set  | 
  1396   | 
  1480 %  | 
  1397 \begin{center} | 
  1481 %\begin{center} | 
  1398 \bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} | 
  1482 %\bl{$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$} | 
  1399 \end{center} | 
  1483 %\end{center} | 
  1400   | 
  1484 %  | 
  1401 prove whether  | 
  1485 %prove whether  | 
  1402   | 
  1486 %  | 
  1403 \begin{center} | 
  1487 %\begin{center} | 
  1404 \bl{$L(rev(r)) = Rev (L(r))$} | 
  1488 %\bl{$L(rev(r)) = Rev (L(r))$} | 
  1405 \end{center} | 
  1489 %\end{center} | 
  1406   | 
  1490 %  | 
  1407 \end{frame} | 
  1491 %\end{frame} | 
  1408 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1492 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
  1409   | 
  1493   | 
  1410   | 
  1494   | 
  1411   | 
  1495   | 
  1412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
  1496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  |