33   | 
    56   | 
    34 \end{frame} | 
    57 \end{frame} | 
    35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       | 
    58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       | 
    36   | 
    59   | 
    37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
    60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
    61 \begin{frame}[c] | 
         | 
    62 \frametitle{Compilers \& Boeings 777} | 
         | 
    63   | 
         | 
    64 First flight in 1994. They want to achieve triple redundancy in hardware  | 
         | 
    65 faults.\bigskip  | 
         | 
    66   | 
         | 
    67 They compile 1 Ada program to\medskip  | 
         | 
    68   | 
         | 
    69 \begin{itemize} | 
         | 
    70 \item Intel 80486  | 
         | 
    71 \item Motorola 68040 (old Macintosh's)  | 
         | 
    72 \item AMD 29050 (RISC chips used often in laser printers)  | 
         | 
    73 \end{itemize}\medskip | 
         | 
    74   | 
         | 
    75 using 3 independent compilers.\bigskip\pause  | 
         | 
    76   | 
         | 
    77 \small Airbus uses C and static analysers. Recently started using CompCert.  | 
         | 
    78   | 
         | 
    79 \end{frame} | 
         | 
    80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
    81   | 
         | 
    82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
    83 \begin{frame}[c] | 
         | 
    84 \frametitle{seL4 / Isabelle} | 
         | 
    85   | 
         | 
    86 \begin{itemize} | 
         | 
    87 \item verified a microkernel operating system ($\approx$8000 lines of C code)\bigskip  | 
         | 
    88 \item US DoD has competitions to hack into drones; they found that the  | 
         | 
    89   isolation guarantees of seL4 hold up\bigskip  | 
         | 
    90 \item CompCert and seL4 sell their code    | 
         | 
    91 \end{itemize} | 
         | 
    92   | 
         | 
    93 \end{frame} | 
         | 
    94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
    95   | 
         | 
    96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
    97 \begin{frame}[c] | 
         | 
    98 \frametitle{POSIX Matchers} | 
         | 
    99   | 
         | 
   100 \begin{itemize} | 
         | 
   101 \item Longest match rule (``maximal munch rule''): The   | 
         | 
   102 longest initial substring matched by any regular expression   | 
         | 
   103 is taken as the next token.  | 
         | 
   104   | 
         | 
   105 \begin{center} | 
         | 
   106 \bl{$\texttt{\Grid{iffoo\VS bla}}$} | 
         | 
   107 \end{center}\medskip | 
         | 
   108   | 
         | 
   109 \item Rule priority:  | 
         | 
   110 For a particular longest initial substring, the first regular  | 
         | 
   111 expression that can match determines the token.  | 
         | 
   112   | 
         | 
   113 \begin{center} | 
         | 
   114 \bl{$\texttt{\Grid{if\VS bla}}$} | 
         | 
   115 \end{center} | 
         | 
   116 \end{itemize}\bigskip\pause | 
         | 
   117   | 
         | 
   118 \small  | 
         | 
   119 \hfill Kuklewicz: most POSIX matchers are buggy\\  | 
         | 
   120 \footnotesize  | 
         | 
   121 \hfill \url{http://www.haskell.org/haskellwiki/Regex_Posix} | 
         | 
   122   | 
         | 
   123 \end{frame} | 
         | 
   124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   125   | 
         | 
   126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   127 \begin{frame}[c] | 
         | 
   128 \mbox{}\\[-14mm]\mbox{} | 
         | 
   129 \small  | 
         | 
   130 \bl{ | 
         | 
   131 \begin{center} | 
         | 
   132 \begin{tabular}{lcl} | 
         | 
   133 $\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\ | 
         | 
   134 $\textit{der}\;c\;(\ONE)$  & $\dn$ & $\ZERO$\\ | 
         | 
   135 $\textit{der}\;c\;(d)$     & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\ | 
         | 
   136 $\textit{der}\;c\;(r_1 + r_2)$ & $\dn$ & $(\textit{der}\;c\;r_1) + (\textit{der}\;c\;r_2)$\\ | 
         | 
   137 $\textit{der}\;c\;(r_1 \cdot r_2)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r_1)$\\ | 
         | 
   138       & & $\textit{then}\;((\textit{der}\;c\;r_1)\cdot r_2) + (\textit{der}\;c\;r_2)$\\ | 
         | 
   139       & & $\textit{else}\;(\textit{der}\;c\;r_1)\cdot r_2$\\ | 
         | 
   140 $\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\ | 
         | 
   141   $\textit{der}\;c\;(r^{\{n\}})$ & $\dn$ & \textit{if} $n=0$ \textit{then} $\ZERO$\\ | 
         | 
   142   & & \textit{else if} $\textit{nullable}(r)$ \textit{then} $(\textit{der}\;c\;r)\cdot (r^{\{\uparrow n-1\}})$\\ | 
         | 
   143   & & \textit{else} $(\textit{der}\;c\;r)\cdot (r^{\{n-1\}})$\\ | 
         | 
   144   $\textit{der}\;c\;(r^{\{\uparrow n\}})$ & $\dn$ & \textit{if} $n=0$ \textit{then} $\ZERO$\\ | 
         | 
   145   & & \textit{else} | 
         | 
   146   $(\textit{der}\;c\;r)\cdot (r^{\{\uparrow n-1\}})$\\ | 
         | 
   147 \end{tabular} | 
         | 
   148 \end{center}} | 
         | 
   149     | 
         | 
   150 \end{frame} | 
         | 
   151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   152   | 
         | 
   153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   154 \begin{frame}[t] | 
         | 
   155 \frametitle{Proofs about Rexps} | 
         | 
   156   | 
         | 
   157 Remember their inductive definition:  | 
         | 
   158   | 
         | 
   159   \begin{center} | 
         | 
   160   \begin{tabular}{@ {}rrl} | 
         | 
   161   \bl{$r$} & \bl{$::=$}  & \bl{$\ZERO$}\\ | 
         | 
   162          & \bl{$\mid$} & \bl{$\ONE$}     \\ | 
         | 
   163          & \bl{$\mid$} & \bl{$c$}            \\ | 
         | 
   164          & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\ | 
         | 
   165          & \bl{$\mid$} & \bl{$r_1 + r_2$}    \\ | 
         | 
   166          & \bl{$\mid$} & \bl{$r^*$}          \\ | 
         | 
   167          & \bl{$\mid$} & \bl{$r^{\{n\}}$}     \\ | 
         | 
   168          & \bl{$\mid$} & \bl{$r^{\{\uparrow n\}}$}     \\ | 
         | 
   169   \end{tabular} | 
         | 
   170   \end{center} | 
         | 
   171   | 
         | 
   172 If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots | 
         | 
   173   | 
         | 
   174 \end{frame} | 
         | 
   175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   176   | 
         | 
   177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   178 \begin{frame}[c] | 
         | 
   179 \frametitle{Proofs about Rexp (2)} | 
         | 
   180   | 
         | 
   181 \begin{itemize} | 
         | 
   182 \item \bl{$P$} holds for \bl{$\ZERO$}, \bl{$\ONE$} and \bl{c}\bigskip | 
         | 
   183 \item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already | 
         | 
   184 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip | 
         | 
   185 \item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already | 
         | 
   186 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip | 
         | 
   187 \item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already | 
         | 
   188   holds for \bl{$r$}. | 
         | 
   189 \item \ldots  | 
         | 
   190 \end{itemize} | 
         | 
   191   | 
         | 
   192 \end{frame} | 
         | 
   193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   194   | 
         | 
   195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   196 \begin{frame}[c] | 
         | 
   197 \frametitle{Proofs about Strings} | 
         | 
   198   | 
         | 
   199 If we want to prove something, say a property \bl{$P(s)$}, for all | 
         | 
   200 strings \bl{$s$} then \ldots\bigskip | 
         | 
   201   | 
         | 
   202 \begin{itemize} | 
         | 
   203 \item \bl{$P$} holds for the empty string, and\medskip | 
         | 
   204 \item \bl{$P$} holds for the string \bl{$c\!::\!s$} under the assumption that \bl{$P$} | 
         | 
   205 already holds for \bl{$s$} | 
         | 
   206 \end{itemize} | 
         | 
   207 \end{frame} | 
         | 
   208 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   209   | 
         | 
   210   | 
         | 
   211 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   212 %\begin{frame}[c] | 
         | 
   213 %  | 
         | 
   214 %\bl{\begin{center} | 
         | 
   215 %\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} | 
         | 
   216 %$zeroable(\varnothing)$      & $\dn$ & \textit{true}\\ | 
         | 
   217 %$zeroable(\epsilon)$         & $\dn$ &  \textit{false}\\ | 
         | 
   218 %$zeroable (c)$               & $\dn$ &  \textit{false}\\ | 
         | 
   219 %$zeroable (r_1 + r_2)$       & $\dn$ &  $zeroable(r_1) \wedge zeroable(r_2)$ \\   | 
         | 
   220 %$zeroable (r_1 \cdot r_2)$   & $\dn$ &  $zeroable(r_1) \vee zeroable(r_2)$ \\  | 
         | 
   221 %$zeroable (r^*)$             & $\dn$ & \textit{false}\\ | 
         | 
   222 %\end{tabular} | 
         | 
   223 %\end{center}} | 
         | 
   224   | 
         | 
   225 %\begin{center} | 
         | 
   226 %\bl{$zeroable(r)$} if and only if \bl{$L(r) = \{\}$} | 
         | 
   227 %\end{center} | 
         | 
   228   | 
         | 
   229 %\end{frame} | 
         | 
   230 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   231   | 
         | 
   232 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   233 \begin{frame}[c] | 
         | 
   234 \frametitle{Correctness of the Matcher} | 
         | 
   235   | 
         | 
   236 \begin{itemize} | 
         | 
   237 \item We want to prove\medskip  | 
         | 
   238 \begin{center} | 
         | 
   239 \bl{$matches\;r\;s$} if and only if \bl{$s\in L(r)$} | 
         | 
   240 \end{center}\bigskip | 
         | 
   241   | 
         | 
   242 where \bl{$matches\;r\;s \dn nullable(ders\;s\;r)$} | 
         | 
   243 \bigskip\pause  | 
         | 
   244   | 
         | 
   245 \item We can do this, if we know\medskip  | 
         | 
   246 \begin{center} | 
         | 
   247 \bl{$L(der\;c\;r) = Der\;c\;(L(r))$} | 
         | 
   248 \end{center} | 
         | 
   249 \end{itemize} | 
         | 
   250 \end{frame} | 
         | 
   251 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   252   | 
         | 
   253   | 
         | 
   254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   255 \begin{frame}[c] | 
         | 
   256 \frametitle{Some Lemmas} | 
         | 
   257   | 
         | 
   258 \begin{itemize} | 
         | 
   259 \item \bl{$Der\;c\;(A\cup B) =  | 
         | 
   260 (Der\;c\;A)\cup(Der\;c\;B)$}\bigskip  | 
         | 
   261 \item If \bl{$[] \in A$} then | 
         | 
   262 \begin{center} | 
         | 
   263 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B \;\cup\; (Der\;c\;B)$} | 
         | 
   264 \end{center}\bigskip | 
         | 
   265 \item If \bl{$[] \not\in A$} then | 
         | 
   266 \begin{center} | 
         | 
   267 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B$} | 
         | 
   268 \end{center}\bigskip | 
         | 
   269 \item \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$}\\ | 
         | 
   270 \small\mbox{}\hfill (interesting case)\\ | 
         | 
   271 \end{itemize} | 
         | 
   272   | 
         | 
   273 \end{frame} | 
         | 
   274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   275   | 
         | 
   276   | 
         | 
   277 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   278 \begin{frame}[c] | 
         | 
   279 \frametitle{Why?} | 
         | 
   280   | 
         | 
   281 Why does \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$} hold? | 
         | 
   282 \bigskip  | 
         | 
   283   | 
         | 
   284   | 
         | 
   285 \begin{center} | 
         | 
   286 \begin{tabular}{lcl} | 
         | 
   287 \bl{$Der\;c\;(A^*)$} & \bl{$=$} &  \bl{$Der\;c\;(A^* - \{[]\})$}\medskip\\ | 
         | 
   288 & \bl{$=$} & \bl{$Der\;c\;((A - \{[]\})\,@\,A^*)$}\medskip\\ | 
         | 
   289 & \bl{$=$} & \bl{$(Der\;c\;(A - \{[]\}))\,@\,A^*$}\medskip\\ | 
         | 
   290 & \bl{$=$} & \bl{$(Der\;c\;A)\,@\,A^*$}\medskip\\ | 
         | 
   291 \end{tabular} | 
         | 
   292 \end{center}\bigskip\bigskip | 
         | 
   293   | 
         | 
   294 \small  | 
         | 
   295 using the facts \bl{$Der\;c\;A = Der\;c\;(A - \{[]\})$} and\\ | 
         | 
   296 \mbox{}\hfill\bl{$(A - \{[]\}) \,@\, A^* = A^* - \{[]\}$} | 
         | 
   297 \end{frame} | 
         | 
   298 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   299   | 
         | 
   300   | 
         | 
   301 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   302 \begin{frame}[c] | 
         | 
   303 \frametitle{POSIX Spec} | 
         | 
   304   | 
         | 
   305 \begin{center} | 
         | 
   306 \bl{\infer{[] \in \ONE \to Empty}{}}\hspace{15mm} | 
         | 
   307 \bl{\infer{c \in c \to Char(c)}{}}\bigskip\medskip | 
         | 
   308   | 
         | 
   309 \bl{\infer{s \in r_1 + r_2 \to Left(v)} | 
         | 
   310           {s \in r_1 \to v}}\hspace{10mm} | 
         | 
   311 \bl{\infer{s \in r_1 + r_2 \to Right(v)} | 
         | 
   312           {s \in r_2 \to v & s \not\in L(r_1)}}\bigskip\medskip | 
         | 
   313   | 
         | 
   314 \bl{\infer{s_1 @ s_2 \in r_1 \cdot r_2 \to Seq(v_1, v_2)} | 
         | 
   315           {\small\begin{array}{l} | 
         | 
   316            s_1 \in r_1 \to v_1 \\  | 
         | 
   317            s_2 \in r_2 \to v_2 \\  | 
         | 
   318            \neg(\exists s_3\,s_4.\; s_3 \not= []  | 
         | 
   319            \wedge s_3 @ s_4 = s_2 \wedge  | 
         | 
   320            s_1 @ s_3 \in L(r_1) \wedge  | 
         | 
   321            s_4 \in L(r_2))  | 
         | 
   322            \end{array}}} | 
         | 
   323              | 
         | 
   324 \bl{\ldots}            | 
         | 
   325 \end{center} | 
         | 
   326   | 
         | 
   327   | 
         | 
   328 \end{frame} | 
         | 
   329 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   | 
         | 
   330   | 
         | 
   331 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   332 \begin{frame}[t,squeeze] | 
         | 
   333 \frametitle{Sulzmann \& Lu Paper} | 
         | 
   334   | 
         | 
   335 \begin{itemize} | 
         | 
   336 \item I have no doubt the algorithm is correct ---   | 
         | 
   337   the problem is I do not believe their proof.  | 
         | 
   338   | 
         | 
   339   \begin{center} | 
         | 
   340   \begin{bubble}[10cm]\small | 
         | 
   341   ``How could I miss this? Well, I was rather careless when   | 
         | 
   342   stating this Lemma :)\smallskip  | 
         | 
   343    | 
         | 
   344   Great example how formal machine checked proofs (and   | 
         | 
   345   proof assistants) can help to spot flawed reasoning steps.''  | 
         | 
   346   \end{bubble} | 
         | 
   347   \end{center}\pause | 
         | 
   348     | 
         | 
   349   %\begin{center} | 
         | 
   350   %\begin{bubble}[10cm]\small | 
         | 
   351   %``Well, I don't think there's any flaw. The issue is how to   | 
         | 
   352   %come up with a mechanical proof. In my world mathematical   | 
         | 
   353   %proof $=$ mechanical proof doesn't necessarily hold.''  | 
         | 
   354   %\end{bubble} | 
         | 
   355   %\end{center}\pause | 
         | 
   356     | 
         | 
   357 \end{itemize} | 
         | 
   358   | 
         | 
   359   \only<3>{% | 
         | 
   360   \begin{textblock}{11}(1,4.4) | 
         | 
   361   \begin{center} | 
         | 
   362   \begin{bubble}[10.9cm]\small\centering | 
         | 
   363   \includegraphics[scale=0.37]{msbug.png} | 
         | 
   364   \end{bubble} | 
         | 
   365   \end{center} | 
         | 
   366   \end{textblock}} | 
         | 
   367     | 
         | 
   368   | 
         | 
   369 \end{frame} | 
         | 
   370 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   | 
         | 
   371   | 
         | 
   372 \end{document} | 
         | 
   373   | 
         | 
   374 %%% Local Variables:    | 
         | 
   375 %%% mode: latex  | 
         | 
   376 %%% TeX-master: t  | 
         | 
   377 %%% End:   | 
         | 
   378   | 
         | 
   379   | 
         | 
   380 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
    38 \begin{frame}[t] | 
   381 \begin{frame}[t] | 
    39 \frametitle{2nd CW} | 
   382 \frametitle{2nd CW} | 
    40   | 
   383   | 
    41 Remember we showed that\\  | 
   384 Remember we showed that\\  | 
    42   | 
   385   | 
    91 \end{itemize} | 
   434 \end{itemize} | 
    92   | 
   435   | 
    93 \end{frame} | 
   436 \end{frame} | 
    94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
   437 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
    95   | 
   438   | 
    96   | 
         | 
    97   | 
         | 
    98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
    99 \begin{frame}[c] | 
         | 
   100 \frametitle{Compilers in Boeings 777} | 
         | 
   101   | 
         | 
   102 They want to achieve triple redundancy in hardware  | 
         | 
   103 faults.\bigskip  | 
         | 
   104   | 
         | 
   105 They compile 1 Ada program to  | 
         | 
   106   | 
         | 
   107 \begin{itemize} | 
         | 
   108 \item Intel 80486  | 
         | 
   109 \item Motorola 68040 (old Macintosh's)  | 
         | 
   110 \item AMD 29050 (RISC chips used often in laser printers)  | 
         | 
   111 \end{itemize} | 
         | 
   112   | 
         | 
   113 \end{frame} | 
         | 
   114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   115   | 
         | 
   116   | 
         | 
   117   | 
         | 
   118   | 
         | 
   119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   120 \begin{frame}[t] | 
         | 
   121 \frametitle{Proofs about Rexps} | 
         | 
   122   | 
         | 
   123 Remember their inductive definition:  | 
         | 
   124   | 
         | 
   125   \begin{center} | 
         | 
   126   \begin{tabular}{@ {}rrl} | 
         | 
   127   \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}\\ | 
         | 
   128          & \bl{$\mid$} & \bl{$\epsilon$}     \\ | 
         | 
   129          & \bl{$\mid$} & \bl{$c$}            \\ | 
         | 
   130          & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\ | 
         | 
   131          & \bl{$\mid$} & \bl{$r_1 + r_2$}    \\ | 
         | 
   132          & \bl{$\mid$} & \bl{$r^*$}          \\ | 
         | 
   133   \end{tabular} | 
         | 
   134   \end{center} | 
         | 
   135   | 
         | 
   136 If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots | 
         | 
   137   | 
         | 
   138 \end{frame} | 
         | 
   139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   140   | 
         | 
   141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   142 \begin{frame}[c] | 
         | 
   143 \frametitle{Proofs about Rexp (2)} | 
         | 
   144   | 
         | 
   145 \begin{itemize} | 
         | 
   146 \item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip | 
         | 
   147 \item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already | 
         | 
   148 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip | 
         | 
   149 \item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already | 
         | 
   150 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip | 
         | 
   151 \item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already | 
         | 
   152 holds for \bl{$r$}. | 
         | 
   153 \end{itemize} | 
         | 
   154   | 
         | 
   155 \end{frame} | 
         | 
   156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   157   | 
         | 
   158   | 
         | 
   159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   160 \begin{frame}[c] | 
         | 
   161   | 
         | 
   162 \bl{\begin{center} | 
         | 
   163 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} | 
         | 
   164 $zeroable(\varnothing)$      & $\dn$ & \textit{true}\\ | 
         | 
   165 $zeroable(\epsilon)$         & $\dn$ &  \textit{false}\\ | 
         | 
   166 $zeroable (c)$               & $\dn$ &  \textit{false}\\ | 
         | 
   167 $zeroable (r_1 + r_2)$       & $\dn$ &  $zeroable(r_1) \wedge zeroable(r_2)$ \\   | 
         | 
   168 $zeroable (r_1 \cdot r_2)$   & $\dn$ &  $zeroable(r_1) \vee zeroable(r_2)$ \\  | 
         | 
   169 $zeroable (r^*)$             & $\dn$ & \textit{false}\\ | 
         | 
   170 \end{tabular} | 
         | 
   171 \end{center}} | 
         | 
   172   | 
         | 
   173 \begin{center} | 
         | 
   174 \bl{$zeroable(r)$} if and only if \bl{$L(r) = \{\}$} | 
         | 
   175 \end{center} | 
         | 
   176   | 
         | 
   177 \end{frame} | 
         | 
   178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   179   | 
         | 
   180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   181 \begin{frame}[c] | 
         | 
   182 \frametitle{Correctness of the Matcher} | 
         | 
   183   | 
         | 
   184 \begin{itemize} | 
         | 
   185 \item We want to prove\medskip  | 
         | 
   186 \begin{center} | 
         | 
   187 \bl{$matches\;r\;s$} if and only if \bl{$s\in L(r)$} | 
         | 
   188 \end{center}\bigskip | 
         | 
   189   | 
         | 
   190 where \bl{$matches\;r\;s \dn nullable(ders\;s\;r)$} | 
         | 
   191 \bigskip\pause  | 
         | 
   192   | 
         | 
   193 \item We can do this, if we know\medskip  | 
         | 
   194 \begin{center} | 
         | 
   195 \bl{$L(der\;c\;r) = Der\;c\;(L(r))$} | 
         | 
   196 \end{center} | 
         | 
   197 \end{itemize} | 
         | 
   198 \end{frame} | 
         | 
   199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   200   | 
         | 
   201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
   439 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
   202 \begin{frame}[c] | 
   440 \begin{frame}[c] | 
   203 \frametitle{Induction over Strings} | 
   441 \frametitle{Induction over Strings} | 
   204   | 
   442   | 
   205 \begin{itemize} | 
   443 \begin{itemize} |