|
1 // A simple matcher for basic regular expressions |
|
2 |
|
3 abstract class Rexp |
|
4 case object ZERO extends Rexp // matches nothing |
|
5 case object ONE extends Rexp // matches an empty string |
|
6 case class CHAR(c: Char) extends Rexp // matches a character c |
|
7 case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative |
|
8 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence |
|
9 case class STAR(r: Rexp) extends Rexp // star |
|
10 |
|
11 // nullable function: tests whether a regular |
|
12 // expression can recognise the empty string |
|
13 def nullable(r: Rexp) : Boolean = r match { |
|
14 case ZERO => false |
|
15 case ONE => true |
|
16 case CHAR(_) => false |
|
17 case ALT(r1, r2) => nullable(r1) || nullable(r2) |
|
18 case SEQ(r1, r2) => nullable(r1) && nullable(r2) |
|
19 case STAR(_) => true |
|
20 } |
|
21 |
|
22 // the derivative of a regular expression w.r.t. a character |
|
23 def der (c: Char, r: Rexp) : Rexp = r match { |
|
24 case ZERO => ZERO |
|
25 case ONE => ZERO |
|
26 case CHAR(d) => if (c == d) ONE else ZERO |
|
27 case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) |
|
28 case SEQ(r1, r2) => |
|
29 if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) |
|
30 else SEQ(der(c, r1), r2) |
|
31 case STAR(r1) => SEQ(der(c, r1), STAR(r1)) |
|
32 } |
|
33 |
|
34 // the derivative w.r.t. a string (iterates der) |
|
35 def ders (s: List[Char], r: Rexp) : Rexp = s match { |
|
36 case Nil => r |
|
37 case c::s => ders(s, der(c, r)) |
|
38 } |
|
39 |
|
40 // the main matcher function |
|
41 def matcher(r: Rexp, s: String) : Boolean = |
|
42 nullable(ders(s.toList, r)) |
|
43 |
|
44 |
|
45 // examples from the homework |
|
46 |
|
47 val r = STAR(ALT(SEQ(CHAR('a'), CHAR('b')), CHAR('b'))) |
|
48 der('a', r) |
|
49 der('b', r) |
|
50 der('c', r) |
|
51 |
|
52 val r2 = SEQ(SEQ(CHAR('x'), CHAR('y')), CHAR('z')) |
|
53 der('x', r2) |
|
54 der('y', der('x', r2)) |
|
55 der('z', der('y', der('x', r2))) |
|
56 |
|
57 |
|
58 // the optional regular expression (one or zero times) |
|
59 def OPT(r: Rexp) = ALT(r, ONE) |
|
60 |
|
61 // the n-times regular expression (explicitly expanded) |
|
62 def NTIMES(r: Rexp, n: Int) : Rexp = n match { |
|
63 case 0 => ONE |
|
64 case 1 => r |
|
65 case n => SEQ(r, NTIMES(r, n - 1)) |
|
66 } |
|
67 |
|
68 |
|
69 // Test Cases |
|
70 |
|
71 // the evil regular expression a?{n} a{n} |
|
72 def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n)) |
|
73 |
|
74 // the evil regular expression (a*)*b |
|
75 val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) |
|
76 |
|
77 // for measuring time |
|
78 def time_needed[T](i: Int, code: => T) = { |
|
79 val start = System.nanoTime() |
|
80 for (j <- 1 to i) code |
|
81 val end = System.nanoTime() |
|
82 (end - start) / (i * 1.0e9) |
|
83 } |
|
84 |
|
85 |
|
86 // test: (a?{n}) (a{n}) |
|
87 println("Test (a?{n}) (a{n})") |
|
88 |
|
89 for (i <- 0 to 20 by 2) { |
|
90 println(f"$i: ${time_needed(2, matcher(EVIL1(i), "a" * i))}%.5f") |
|
91 } |
|
92 |
|
93 // test: (a*)* b |
|
94 println("Test (a*)* b") |
|
95 |
|
96 for (i <- 0 to 20 by 2) { |
|
97 println(f"$i: ${time_needed(2, matcher(EVIL2, "a" * i))}%.5f") |
|
98 } |
|
99 |
|
100 |
|
101 // the size of a regular expressions - for testing purposes |
|
102 def size(r: Rexp) : Int = r match { |
|
103 case ZERO => 1 |
|
104 case ONE => 1 |
|
105 case CHAR(_) => 1 |
|
106 case ALT(r1, r2) => 1 + size(r1) + size(r2) |
|
107 case SEQ(r1, r2) => 1 + size(r1) + size(r2) |
|
108 case STAR(r) => 1 + size(r) |
|
109 } |
|
110 |
|
111 // the expicit expansion in EVIL1(n) increases |
|
112 // drastically its size |
|
113 |
|
114 size(EVIL1(1)) // 5 |
|
115 size(EVIL1(3)) // 17 |
|
116 size(EVIL1(5)) // 29 |
|
117 size(EVIL1(7)) // 41 |
|
118 size(EVIL1(20)) // 119 |
|
119 |
|
120 // given a regular expression and building successive |
|
121 // derivatives might result into bigger and bigger |
|
122 // regular expressions...here is an example for this: |
|
123 |
|
124 // (a+b)* o a o b o (a+b)* |
|
125 val BIG_aux = STAR(ALT(CHAR('a'), CHAR('b'))) |
|
126 val BIG = SEQ(BIG_aux, SEQ(CHAR('a'),SEQ(CHAR('b'), BIG_aux))) |
|
127 |
|
128 size(ders("".toList, BIG)) // 13 |
|
129 size(ders("ab".toList, BIG)) // 51 |
|
130 size(ders("abab".toList, BIG)) // 112 |
|
131 size(ders("ababab".toList, BIG)) // 191 |
|
132 size(ders("abababab".toList, BIG)) // 288 |
|
133 size(ders("ababababab".toList, BIG)) // 403 |
|
134 size(ders("abababababab".toList, BIG)) // 536 |
|
135 |
|
136 |
|
137 size(ders(("ab" * 200).toList, BIG)) // 366808 |
|
138 |
|
139 for (i <- 0 to 200 by 10) { |
|
140 println(f"$i: ${time_needed(2, matcher(BIG, "ab" * i))}%.5f") |
|
141 } |
|
142 |
|
143 |
|
144 |
|
145 |
|
146 ////////////////////////////////////// |
|
147 def concat(A: Set[String], B: Set[String]) : Set[String] = |
|
148 for (s1 <- A; s2 <- B) yield s1 ++ s2 |
|
149 |
|
150 |
|
151 val A = Set("foo", "bar") |
|
152 val B = Set("a", "b") |
|
153 |
|
154 |