equal
  deleted
  inserted
  replaced
  
    
    
    92 What is your King's email address (you will need it in  | 
    92 What is your King's email address (you will need it in  | 
    93 Question 3)?  | 
    93 Question 3)?  | 
    94   | 
    94   | 
    95 \subsection*{Question 2} | 
    95 \subsection*{Question 2} | 
    96   | 
    96   | 
    97 This question does not require any implementation. From the  | 
    97 From the  | 
    98 lectures you have seen the definitions for the functions  | 
    98 lectures you have seen the definitions for the functions  | 
    99 \textit{nullable} and \textit{der} for the basic regular | 
    99 \textit{nullable} and \textit{der} for the basic regular | 
   100 expressions. Give the rules for the extended regular  | 
   100 expressions. Implement the rules for the extended regular  | 
   101 expressions:  | 
   101 expressions:  | 
   102   | 
   102   | 
   103 \begin{center} | 
   103 \begin{center} | 
   104 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} | 
   104 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} | 
   105 $\textit{nullable}([c_1 c_2 \ldots c_n])$  & $\dn$ & $?$\\ | 
   105 $\textit{nullable}([c_1 c_2 \ldots c_n])$  & $\dn$ & $?$\\ | 
   121 \begin{itemize} | 
   121 \begin{itemize} | 
   122 \item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ | 
   122 \item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ | 
   123 \item $L(der\,c\,r)) = Der\,c\,(L(r))$  | 
   123 \item $L(der\,c\,r)) = Der\,c\,(L(r))$  | 
   124 \end{itemize} | 
   124 \end{itemize} | 
   125   | 
   125   | 
         | 
   126 \noindent  | 
         | 
   127 Give the implementation and the text-version of the clauses above.  | 
         | 
   128   | 
   126 \subsection*{Question 3} | 
   129 \subsection*{Question 3} | 
   127   | 
   130   | 
   128 Implement the following regular expression for email addresses  | 
   131 Implement the following regular expression for email addresses  | 
   129   | 
   132   | 
   130 \[  | 
   133 \[  | 
   168 \item \texttt{"/*test/*test*/"} | 
   171 \item \texttt{"/*test/*test*/"} | 
   169 \end{enumerate} | 
   172 \end{enumerate} | 
   170   | 
   173   | 
   171 \noindent  | 
   174 \noindent  | 
   172 Also test your regular expression matcher with the regular  | 
   175 Also test your regular expression matcher with the regular  | 
   173 expression $a^{\{3,5\}}$ and the strings | 
   176 expressions $a^{\{3,5\}}$ and $(a^?)^{\{3,5\}}$. Test whether the | 
         | 
   177 strings  | 
   174   | 
   178   | 
   175 \begin{enumerate} | 
   179 \begin{enumerate} | 
   176 \setcounter{enumi}{4} | 
   180 \setcounter{enumi}{4} | 
   177 \item \texttt{aa} | 
   181 \item \texttt{aa} | 
   178 \item \texttt{aaa} | 
   182 \item \texttt{aaa} | 
   179 \item \texttt{aaaaa} | 
   183 \item \texttt{aaaaa} | 
   180 \item \texttt{aaaaaa} | 
   184 \item \texttt{aaaaaa} | 
   181 \end{enumerate} | 
   185 \end{enumerate} | 
   182   | 
   186   | 
   183 \noindent  | 
   187 \noindent  | 
   184 Does your matcher produce the expected results?  | 
   188 are matched or not. Does your matcher produce the expected results?  | 
   185   | 
   189   | 
   186 \subsection*{Question 5} | 
   190 \subsection*{Question 5} | 
   187   | 
   191   | 
   188 Let $r_1$ be the regular expression $a\cdot a\cdot a$ and $r_2$ be  | 
   192 Let $r_1$ be the regular expression $a\cdot a\cdot a$ and $r_2$ be  | 
   189 $(a^{\{19,19\}}) \cdot (a^?)$.  Decide whether the following three | 
   193 $(a^{\{19,19\}}) \cdot (a^?)$.  Decide whether the following three |