slides/slides11.tex
changeset 471 9476086849ad
parent 458 896a5f91838d
child 500 c502933be072
equal deleted inserted replaced
469:1f4e81950ab4 471:9476086849ad
     2 \usepackage{../slides}
     2 \usepackage{../slides}
     3 \usepackage{../langs}
     3 \usepackage{../langs}
     4 \usepackage{../data}
     4 \usepackage{../data}
     5 \usepackage{../graphics}
     5 \usepackage{../graphics}
     6 \usepackage{soul}
     6 \usepackage{soul}
     7 
     7 \usepackage{proof}
     8 
     8 
     9 % beamer stuff
     9 % beamer stuff
    10 \renewcommand{\slidecaption}{CFL, King's College London}
    10 \renewcommand{\slidecaption}{CFL, King's College London}
    11 \newcommand{\bl}[1]{\textcolor{blue}{#1}}       
    11 \newcommand{\bl}[1]{\textcolor{blue}{#1}}       
       
    12 
       
    13 \newcommand\grid[1]{%
       
    14 	\begin{tikzpicture}[baseline=(char.base)]
       
    15 	\path[use as bounding box]
       
    16 	(0,0) rectangle (1em,1em);
       
    17 	\draw[red!50, fill=red!20]
       
    18 	(0,0) rectangle (1em,1em);
       
    19 	\node[inner sep=1pt,anchor=base west]
       
    20 	(char) at (0em,\gridraiseamount) {#1};
       
    21 	\end{tikzpicture}}
       
    22 \newcommand\gridraiseamount{0.12em}
       
    23 
       
    24 \makeatletter
       
    25 \newcommand\Grid[1]{%
       
    26 	\@tfor\z:=#1\do{\grid{\z}}}
       
    27 \makeatother	
       
    28 
       
    29 \newcommand\Vspace[1][.3em]{%
       
    30 	\mbox{\kern.06em\vrule height.3ex}%
       
    31 	\vbox{\hrule width#1}%
       
    32 	\hbox{\vrule height.3ex}}
       
    33 
       
    34 \def\VS{\Vspace[0.6em]}
    12 
    35 
    13 
    36 
    14 \begin{document}
    37 \begin{document}
    15 
    38 
    16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    33 
    56 
    34 \end{frame}
    57 \end{frame}
    35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    36 
    59 
    37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    61 \begin{frame}[c]
       
    62 \frametitle{Compilers \& Boeings 777}
       
    63 
       
    64 First flight in 1994. They want to achieve triple redundancy in hardware
       
    65 faults.\bigskip
       
    66 
       
    67 They compile 1 Ada program to\medskip
       
    68 
       
    69 \begin{itemize}
       
    70 \item Intel 80486
       
    71 \item Motorola 68040 (old Macintosh's)
       
    72 \item AMD 29050 (RISC chips used often in laser printers)
       
    73 \end{itemize}\medskip
       
    74 
       
    75 using 3 independent compilers.\bigskip\pause
       
    76 
       
    77 \small Airbus uses C and static analysers. Recently started using CompCert.
       
    78 
       
    79 \end{frame}
       
    80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
    81 
       
    82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    83 \begin{frame}[c]
       
    84 \frametitle{seL4 / Isabelle}
       
    85 
       
    86 \begin{itemize}
       
    87 \item verified a microkernel operating system ($\approx$8000 lines of C code)\bigskip
       
    88 \item US DoD has competitions to hack into drones; they found that the
       
    89   isolation guarantees of seL4 hold up\bigskip
       
    90 \item CompCert and seL4 sell their code  
       
    91 \end{itemize}
       
    92 
       
    93 \end{frame}
       
    94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
    95 
       
    96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    97 \begin{frame}[c]
       
    98 \frametitle{POSIX Matchers}
       
    99 
       
   100 \begin{itemize}
       
   101 \item Longest match rule (``maximal munch rule''): The 
       
   102 longest initial substring matched by any regular expression 
       
   103 is taken as the next token.
       
   104 
       
   105 \begin{center}
       
   106 \bl{$\texttt{\Grid{iffoo\VS bla}}$}
       
   107 \end{center}\medskip
       
   108 
       
   109 \item Rule priority:
       
   110 For a particular longest initial substring, the first regular
       
   111 expression that can match determines the token.
       
   112 
       
   113 \begin{center}
       
   114 \bl{$\texttt{\Grid{if\VS bla}}$}
       
   115 \end{center}
       
   116 \end{itemize}\bigskip\pause
       
   117 
       
   118 \small
       
   119 \hfill Kuklewicz: most POSIX matchers are buggy\\
       
   120 \footnotesize
       
   121 \hfill \url{http://www.haskell.org/haskellwiki/Regex_Posix}
       
   122 
       
   123 \end{frame}
       
   124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   125 
       
   126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   127 \begin{frame}[c]
       
   128 \mbox{}\\[-14mm]\mbox{}
       
   129 \small
       
   130 \bl{
       
   131 \begin{center}
       
   132 \begin{tabular}{lcl}
       
   133 $\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\
       
   134 $\textit{der}\;c\;(\ONE)$  & $\dn$ & $\ZERO$\\
       
   135 $\textit{der}\;c\;(d)$     & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\
       
   136 $\textit{der}\;c\;(r_1 + r_2)$ & $\dn$ & $(\textit{der}\;c\;r_1) + (\textit{der}\;c\;r_2)$\\
       
   137 $\textit{der}\;c\;(r_1 \cdot r_2)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r_1)$\\
       
   138       & & $\textit{then}\;((\textit{der}\;c\;r_1)\cdot r_2) + (\textit{der}\;c\;r_2)$\\
       
   139       & & $\textit{else}\;(\textit{der}\;c\;r_1)\cdot r_2$\\
       
   140 $\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\
       
   141   $\textit{der}\;c\;(r^{\{n\}})$ & $\dn$ & \textit{if} $n=0$ \textit{then} $\ZERO$\\
       
   142   & & \textit{else if} $\textit{nullable}(r)$ \textit{then} $(\textit{der}\;c\;r)\cdot (r^{\{\uparrow n-1\}})$\\
       
   143   & & \textit{else} $(\textit{der}\;c\;r)\cdot (r^{\{n-1\}})$\\
       
   144   $\textit{der}\;c\;(r^{\{\uparrow n\}})$ & $\dn$ & \textit{if} $n=0$ \textit{then} $\ZERO$\\
       
   145   & & \textit{else}
       
   146   $(\textit{der}\;c\;r)\cdot (r^{\{\uparrow n-1\}})$\\
       
   147 \end{tabular}
       
   148 \end{center}}
       
   149   
       
   150 \end{frame}
       
   151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   152 
       
   153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   154 \begin{frame}[t]
       
   155 \frametitle{Proofs about Rexps}
       
   156 
       
   157 Remember their inductive definition:
       
   158 
       
   159   \begin{center}
       
   160   \begin{tabular}{@ {}rrl}
       
   161   \bl{$r$} & \bl{$::=$}  & \bl{$\ZERO$}\\
       
   162          & \bl{$\mid$} & \bl{$\ONE$}     \\
       
   163          & \bl{$\mid$} & \bl{$c$}            \\
       
   164          & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
       
   165          & \bl{$\mid$} & \bl{$r_1 + r_2$}    \\
       
   166          & \bl{$\mid$} & \bl{$r^*$}          \\
       
   167          & \bl{$\mid$} & \bl{$r^{\{n\}}$}     \\
       
   168          & \bl{$\mid$} & \bl{$r^{\{\uparrow n\}}$}     \\
       
   169   \end{tabular}
       
   170   \end{center}
       
   171 
       
   172 If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots
       
   173 
       
   174 \end{frame}
       
   175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   176 
       
   177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   178 \begin{frame}[c]
       
   179 \frametitle{Proofs about Rexp (2)}
       
   180 
       
   181 \begin{itemize}
       
   182 \item \bl{$P$} holds for \bl{$\ZERO$}, \bl{$\ONE$} and \bl{c}\bigskip
       
   183 \item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already
       
   184 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
       
   185 \item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already
       
   186 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
       
   187 \item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already
       
   188   holds for \bl{$r$}.
       
   189 \item \ldots
       
   190 \end{itemize}
       
   191 
       
   192 \end{frame}
       
   193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   194 
       
   195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   196 \begin{frame}[c]
       
   197 \frametitle{Proofs about Strings}
       
   198 
       
   199 If we want to prove something, say a property \bl{$P(s)$}, for all
       
   200 strings \bl{$s$} then \ldots\bigskip
       
   201 
       
   202 \begin{itemize}
       
   203 \item \bl{$P$} holds for the empty string, and\medskip
       
   204 \item \bl{$P$} holds for the string \bl{$c\!::\!s$} under the assumption that \bl{$P$}
       
   205 already holds for \bl{$s$}
       
   206 \end{itemize}
       
   207 \end{frame}
       
   208 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   209 
       
   210 
       
   211 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   212 %\begin{frame}[c]
       
   213 %
       
   214 %\bl{\begin{center}
       
   215 %\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
       
   216 %$zeroable(\varnothing)$      & $\dn$ & \textit{true}\\
       
   217 %$zeroable(\epsilon)$         & $\dn$ &  \textit{false}\\
       
   218 %$zeroable (c)$               & $\dn$ &  \textit{false}\\
       
   219 %$zeroable (r_1 + r_2)$       & $\dn$ &  $zeroable(r_1) \wedge zeroable(r_2)$ \\ 
       
   220 %$zeroable (r_1 \cdot r_2)$   & $\dn$ &  $zeroable(r_1) \vee zeroable(r_2)$ \\
       
   221 %$zeroable (r^*)$             & $\dn$ & \textit{false}\\
       
   222 %\end{tabular}
       
   223 %\end{center}}
       
   224 
       
   225 %\begin{center}
       
   226 %\bl{$zeroable(r)$} if and only if \bl{$L(r) = \{\}$}
       
   227 %\end{center}
       
   228 
       
   229 %\end{frame}
       
   230 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   231 
       
   232 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   233 \begin{frame}[c]
       
   234 \frametitle{Correctness of the Matcher}
       
   235 
       
   236 \begin{itemize}
       
   237 \item We want to prove\medskip
       
   238 \begin{center}
       
   239 \bl{$matches\;r\;s$} if and only if \bl{$s\in L(r)$}
       
   240 \end{center}\bigskip
       
   241 
       
   242 where \bl{$matches\;r\;s \dn nullable(ders\;s\;r)$}
       
   243 \bigskip\pause
       
   244 
       
   245 \item We can do this, if we know\medskip
       
   246 \begin{center}
       
   247 \bl{$L(der\;c\;r) = Der\;c\;(L(r))$}
       
   248 \end{center}
       
   249 \end{itemize}
       
   250 \end{frame}
       
   251 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   252 
       
   253 
       
   254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   255 \begin{frame}[c]
       
   256 \frametitle{Some Lemmas}
       
   257 
       
   258 \begin{itemize}
       
   259 \item \bl{$Der\;c\;(A\cup B) = 
       
   260 (Der\;c\;A)\cup(Der\;c\;B)$}\bigskip
       
   261 \item If \bl{$[] \in A$} then
       
   262 \begin{center}
       
   263 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B \;\cup\; (Der\;c\;B)$}
       
   264 \end{center}\bigskip
       
   265 \item If \bl{$[] \not\in A$} then
       
   266 \begin{center}
       
   267 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B$}
       
   268 \end{center}\bigskip
       
   269 \item \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$}\\
       
   270 \small\mbox{}\hfill (interesting case)\\
       
   271 \end{itemize}
       
   272 
       
   273 \end{frame}
       
   274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   275 
       
   276 
       
   277 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   278 \begin{frame}[c]
       
   279 \frametitle{Why?}
       
   280 
       
   281 Why does \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$} hold?
       
   282 \bigskip
       
   283 
       
   284 
       
   285 \begin{center}
       
   286 \begin{tabular}{lcl}
       
   287 \bl{$Der\;c\;(A^*)$} & \bl{$=$} &  \bl{$Der\;c\;(A^* - \{[]\})$}\medskip\\
       
   288 & \bl{$=$} & \bl{$Der\;c\;((A - \{[]\})\,@\,A^*)$}\medskip\\
       
   289 & \bl{$=$} & \bl{$(Der\;c\;(A - \{[]\}))\,@\,A^*$}\medskip\\
       
   290 & \bl{$=$} & \bl{$(Der\;c\;A)\,@\,A^*$}\medskip\\
       
   291 \end{tabular}
       
   292 \end{center}\bigskip\bigskip
       
   293 
       
   294 \small
       
   295 using the facts \bl{$Der\;c\;A = Der\;c\;(A - \{[]\})$} and\\
       
   296 \mbox{}\hfill\bl{$(A - \{[]\}) \,@\, A^* = A^* - \{[]\}$}
       
   297 \end{frame}
       
   298 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   299 
       
   300 
       
   301 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   302 \begin{frame}[c]
       
   303 \frametitle{POSIX Spec}
       
   304 
       
   305 \begin{center}
       
   306 \bl{\infer{[] \in \ONE \to Empty}{}}\hspace{15mm}
       
   307 \bl{\infer{c \in c \to Char(c)}{}}\bigskip\medskip
       
   308 
       
   309 \bl{\infer{s \in r_1 + r_2 \to Left(v)}
       
   310           {s \in r_1 \to v}}\hspace{10mm}
       
   311 \bl{\infer{s \in r_1 + r_2 \to Right(v)}
       
   312           {s \in r_2 \to v & s \not\in L(r_1)}}\bigskip\medskip
       
   313 
       
   314 \bl{\infer{s_1 @ s_2 \in r_1 \cdot r_2 \to Seq(v_1, v_2)}
       
   315           {\small\begin{array}{l}
       
   316            s_1 \in r_1 \to v_1 \\
       
   317            s_2 \in r_2 \to v_2 \\
       
   318            \neg(\exists s_3\,s_4.\; s_3 \not= []
       
   319            \wedge s_3 @ s_4 = s_2 \wedge
       
   320            s_1 @ s_3 \in L(r_1) \wedge
       
   321            s_4 \in L(r_2))
       
   322            \end{array}}}
       
   323            
       
   324 \bl{\ldots}           
       
   325 \end{center}
       
   326 
       
   327 
       
   328 \end{frame}
       
   329 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
   330 
       
   331 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   332 \begin{frame}[t,squeeze]
       
   333 \frametitle{Sulzmann \& Lu Paper}
       
   334 
       
   335 \begin{itemize}
       
   336 \item I have no doubt the algorithm is correct --- 
       
   337   the problem is I do not believe their proof.
       
   338 
       
   339   \begin{center}
       
   340   \begin{bubble}[10cm]\small
       
   341   ``How could I miss this? Well, I was rather careless when 
       
   342   stating this Lemma :)\smallskip
       
   343  
       
   344   Great example how formal machine checked proofs (and 
       
   345   proof assistants) can help to spot flawed reasoning steps.''
       
   346   \end{bubble}
       
   347   \end{center}\pause
       
   348   
       
   349   %\begin{center}
       
   350   %\begin{bubble}[10cm]\small
       
   351   %``Well, I don't think there's any flaw. The issue is how to 
       
   352   %come up with a mechanical proof. In my world mathematical 
       
   353   %proof $=$ mechanical proof doesn't necessarily hold.''
       
   354   %\end{bubble}
       
   355   %\end{center}\pause
       
   356   
       
   357 \end{itemize}
       
   358 
       
   359   \only<3>{%
       
   360   \begin{textblock}{11}(1,4.4)
       
   361   \begin{center}
       
   362   \begin{bubble}[10.9cm]\small\centering
       
   363   \includegraphics[scale=0.37]{msbug.png}
       
   364   \end{bubble}
       
   365   \end{center}
       
   366   \end{textblock}}
       
   367   
       
   368 
       
   369 \end{frame}
       
   370 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
   371 
       
   372 \end{document}
       
   373 
       
   374 %%% Local Variables:  
       
   375 %%% mode: latex
       
   376 %%% TeX-master: t
       
   377 %%% End: 
       
   378 
       
   379 
       
   380 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    38 \begin{frame}[t]
   381 \begin{frame}[t]
    39 \frametitle{2nd CW}
   382 \frametitle{2nd CW}
    40 
   383 
    41 Remember we showed that\\
   384 Remember we showed that\\
    42 
   385 
    91 \end{itemize}
   434 \end{itemize}
    92 
   435 
    93 \end{frame}
   436 \end{frame}
    94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
   437 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
    95 
   438 
    96 
       
    97 
       
    98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
    99 \begin{frame}[c]
       
   100 \frametitle{Compilers in Boeings 777}
       
   101 
       
   102 They want to achieve triple redundancy in hardware
       
   103 faults.\bigskip
       
   104 
       
   105 They compile 1 Ada program to
       
   106 
       
   107 \begin{itemize}
       
   108 \item Intel 80486
       
   109 \item Motorola 68040 (old Macintosh's)
       
   110 \item AMD 29050 (RISC chips used often in laser printers)
       
   111 \end{itemize}
       
   112 
       
   113 \end{frame}
       
   114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   115 
       
   116 
       
   117 
       
   118 
       
   119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   120 \begin{frame}[t]
       
   121 \frametitle{Proofs about Rexps}
       
   122 
       
   123 Remember their inductive definition:
       
   124 
       
   125   \begin{center}
       
   126   \begin{tabular}{@ {}rrl}
       
   127   \bl{$r$} & \bl{$::=$}  & \bl{$\varnothing$}\\
       
   128          & \bl{$\mid$} & \bl{$\epsilon$}     \\
       
   129          & \bl{$\mid$} & \bl{$c$}            \\
       
   130          & \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
       
   131          & \bl{$\mid$} & \bl{$r_1 + r_2$}    \\
       
   132          & \bl{$\mid$} & \bl{$r^*$}          \\
       
   133   \end{tabular}
       
   134   \end{center}
       
   135 
       
   136 If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots
       
   137 
       
   138 \end{frame}
       
   139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   140 
       
   141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   142 \begin{frame}[c]
       
   143 \frametitle{Proofs about Rexp (2)}
       
   144 
       
   145 \begin{itemize}
       
   146 \item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
       
   147 \item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already
       
   148 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
       
   149 \item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already
       
   150 holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
       
   151 \item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already
       
   152 holds for \bl{$r$}.
       
   153 \end{itemize}
       
   154 
       
   155 \end{frame}
       
   156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   157 
       
   158 
       
   159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   160 \begin{frame}[c]
       
   161 
       
   162 \bl{\begin{center}
       
   163 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
       
   164 $zeroable(\varnothing)$      & $\dn$ & \textit{true}\\
       
   165 $zeroable(\epsilon)$         & $\dn$ &  \textit{false}\\
       
   166 $zeroable (c)$               & $\dn$ &  \textit{false}\\
       
   167 $zeroable (r_1 + r_2)$       & $\dn$ &  $zeroable(r_1) \wedge zeroable(r_2)$ \\ 
       
   168 $zeroable (r_1 \cdot r_2)$   & $\dn$ &  $zeroable(r_1) \vee zeroable(r_2)$ \\
       
   169 $zeroable (r^*)$             & $\dn$ & \textit{false}\\
       
   170 \end{tabular}
       
   171 \end{center}}
       
   172 
       
   173 \begin{center}
       
   174 \bl{$zeroable(r)$} if and only if \bl{$L(r) = \{\}$}
       
   175 \end{center}
       
   176 
       
   177 \end{frame}
       
   178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   179 
       
   180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   181 \begin{frame}[c]
       
   182 \frametitle{Correctness of the Matcher}
       
   183 
       
   184 \begin{itemize}
       
   185 \item We want to prove\medskip
       
   186 \begin{center}
       
   187 \bl{$matches\;r\;s$} if and only if \bl{$s\in L(r)$}
       
   188 \end{center}\bigskip
       
   189 
       
   190 where \bl{$matches\;r\;s \dn nullable(ders\;s\;r)$}
       
   191 \bigskip\pause
       
   192 
       
   193 \item We can do this, if we know\medskip
       
   194 \begin{center}
       
   195 \bl{$L(der\;c\;r) = Der\;c\;(L(r))$}
       
   196 \end{center}
       
   197 \end{itemize}
       
   198 \end{frame}
       
   199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   200 
       
   201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   439 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   202 \begin{frame}[c]
   440 \begin{frame}[c]
   203 \frametitle{Induction over Strings}
   441 \frametitle{Induction over Strings}
   204 
   442 
   205 \begin{itemize}
   443 \begin{itemize}
   256 \end{center} 
   494 \end{center} 
   257 \end{itemize}
   495 \end{itemize}
   258 
   496 
   259 \end{frame}
   497 \end{frame}
   260 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
   498 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
   261 
       
   262 
       
   263 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   264 \begin{frame}[c]
       
   265 \frametitle{Some Lemmas}
       
   266 
       
   267 \begin{itemize}
       
   268 \item \bl{$Der\;c\;(A\cup B) = 
       
   269 (Der\;c\;A)\cup(Der\;c\;B)$}\bigskip
       
   270 \item If \bl{$[] \in A$} then
       
   271 \begin{center}
       
   272 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B \;\cup\; (Der\;c\;B)$}
       
   273 \end{center}\bigskip
       
   274 \item If \bl{$[] \not\in A$} then
       
   275 \begin{center}
       
   276 \bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B$}
       
   277 \end{center}\bigskip
       
   278 \item \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$}\\
       
   279 \small\mbox{}\hfill (interesting case)\\
       
   280 \end{itemize}
       
   281 
       
   282 \end{frame}
       
   283 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   284 
       
   285 
       
   286 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
   287 \begin{frame}[c]
       
   288 \frametitle{Why?}
       
   289 
       
   290 Why does \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$} hold?
       
   291 \bigskip
       
   292 
       
   293 
       
   294 \begin{center}
       
   295 \begin{tabular}{lcl}
       
   296 \bl{$Der\;c\;(A^*)$} & \bl{$=$} &  \bl{$Der\;c\;(A^* - \{[]\})$}\medskip\\
       
   297 & \bl{$=$} & \bl{$Der\;c\;((A - \{[]\})\,@\,A^*)$}\medskip\\
       
   298 & \bl{$=$} & \bl{$(Der\;c\;(A - \{[]\}))\,@\,A^*$}\medskip\\
       
   299 & \bl{$=$} & \bl{$(Der\;c\;A)\,@\,A^*$}\medskip\\
       
   300 \end{tabular}
       
   301 \end{center}\bigskip\bigskip
       
   302 
       
   303 \small
       
   304 using the facts \bl{$Der\;c\;A = Der\;c\;(A - \{[]\})$} and\\
       
   305 \mbox{}\hfill\bl{$(A - \{[]\}) \,@\, A^* = A^* - \{[]\}$}
       
   306 \end{frame}
       
   307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
       
   308 
       
   309 
       
   310 
       
   311 \end{document}
       
   312 
       
   313 %%% Local Variables:  
       
   314 %%% mode: latex
       
   315 %%% TeX-master: t
       
   316 %%% End: 
       
   317