223   \end{textblock}} | 
   221   \end{textblock}} | 
   224   | 
   222   | 
   225   \end{frame}} | 
   223   \end{frame}} | 
   226   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       | 
   224   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       | 
   227   | 
   225   | 
   228   | 
   226 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
   229   | 
   227 \begin{frame}[c] | 
         | 
   228 \frametitle{Compilers \& Boeings 777} | 
         | 
   229   | 
         | 
   230 First flight in 1994. They want to achieve triple redundancy in hardware  | 
         | 
   231 faults.\bigskip  | 
         | 
   232   | 
         | 
   233 They compile 1 Ada program to\medskip  | 
         | 
   234   | 
         | 
   235 \begin{itemize} | 
         | 
   236 \item Intel 80486  | 
         | 
   237 \item Motorola 68040 (old Macintosh's)  | 
         | 
   238 \item AMD 29050 (RISC chips used often in laser printers)  | 
         | 
   239 \end{itemize}\medskip | 
         | 
   240   | 
         | 
   241 using 3 independent compilers.\bigskip\pause  | 
         | 
   242   | 
         | 
   243 \small Airbus uses C and static analysers. Recently started using CompCert.  | 
         | 
   244   | 
         | 
   245 \end{frame} | 
         | 
   246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   247   | 
         | 
   248 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   249 \begin{frame}[c] | 
         | 
   250   | 
         | 
   251 {\Large\bf   | 
         | 
   252 How many strings are in \bl{$L(a^*)$}?}\bigskip\pause  | 
         | 
   253   | 
         | 
   254 \normalsize  | 
         | 
   255 \begin{center} | 
         | 
   256 \begin{tabular}{llllll} | 
         | 
   257   \bl{$[]$} &  \bl{$a$} &  \bl{$aa$} & \bl{$aaa$} & \bl{$aaaa$} & \ldots\\ | 
         | 
   258   \bl{0}  &  \bl{1} &  \bl{2}  & \bl{3}   & \bl{4}  & \ldots     | 
         | 
   259 \end{tabular} | 
         | 
   260 \end{center} | 
         | 
   261   | 
         | 
   262 \end{frame} | 
         | 
   263 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   264   | 
         | 
   265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   266 \begin{frame}[c] | 
         | 
   267   | 
         | 
   268 \Large\bf There are more problems, than there are  | 
         | 
   269 programs.\bigskip\bigskip\pause\\  | 
         | 
   270   | 
         | 
   271 There must be a problem for which there is no program.  | 
         | 
   272 \end{frame} | 
         | 
   273 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   274   | 
         | 
   275 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   276 \begin{frame}[c] | 
         | 
   277 \frametitle{Subsets} | 
         | 
   278   | 
         | 
   279 \Large  | 
         | 
   280 If \bl{$A \subseteq B$} then \bl{$A$} has fewer or equal elements  | 
         | 
   281 than \bl{$B$}\bigskip\bigskip | 
         | 
   282   | 
         | 
   283 \Large  | 
         | 
   284 \bl{$A \subseteq B$} and \bl{$B \subseteq A$}\bigskip | 
         | 
   285   | 
         | 
   286 then \bl{$A = B$} | 
         | 
   287 \end{frame} | 
         | 
   288 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   289   | 
         | 
   290   | 
         | 
   291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   292   \begin{frame}[c] | 
         | 
   293     | 
         | 
   294   \begin{center} | 
         | 
   295   \begin{tikzpicture} | 
         | 
   296     | 
         | 
   297   \draw (-4,2.5) node [scale=2.5] (X)   | 
         | 
   298     {\begin{tabular}{l} | 
         | 
   299      $\{$   | 
         | 
   300      \!\includegraphics[scale=0.02]{../pics/o1.jpg}, | 
         | 
   301      \includegraphics[scale=0.02]{../pics/o2.jpg}, | 
         | 
   302      \!\includegraphics[scale=0.02]{../pics/o3.jpg}, | 
         | 
   303      \includegraphics[scale=0.02]{../pics/o4.jpg}, | 
         | 
   304      \!\includegraphics[scale=0.027]{../pics/o5.jpg} | 
         | 
   305      $\}$  | 
         | 
   306     \end{tabular}}; | 
         | 
   307       | 
         | 
   308     \draw (-5.6,-2.5) node [scale=2.5] (Y)   | 
         | 
   309     {\begin{tabular}{l} | 
         | 
   310      $\{$   | 
         | 
   311      \!\includegraphics[scale=0.059]{../pics/a1.jpg}, | 
         | 
   312      \includegraphics[scale=0.048]{../pics/a2.jpg}, | 
         | 
   313      \includegraphics[scale=0.02]{../pics/a3.jpg} | 
         | 
   314      $\}$  | 
         | 
   315     \end{tabular}}; | 
         | 
   316       | 
         | 
   317      \draw (0,1.5) node (X1) {5 elements}; | 
         | 
   318      \draw (0,-3.5) node (y1) {3 elements}; | 
         | 
   319   \end{tikzpicture} | 
         | 
   320   \end{center} | 
         | 
   321   | 
         | 
   322   \end{frame} | 
         | 
   323 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   324   | 
         | 
   325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   326   \begin{frame}[c] | 
         | 
   327   \frametitle{Newton vs Feynman} | 
         | 
   328     | 
         | 
   329   \begin{center} | 
         | 
   330   \begin{tabular}{cc} | 
         | 
   331   \includegraphics[scale=0.2]{../pics/newton.jpg} & | 
         | 
   332   \includegraphics[scale=0.2]{../pics/feynman.jpg}\\ | 
         | 
   333   classical physics & quantum physics  | 
         | 
   334   \end{tabular} | 
         | 
   335   \end{center} | 
         | 
   336   \end{frame} | 
         | 
   337 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   338   | 
         | 
   339 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   340   \begin{frame}[c] | 
         | 
   341   \frametitle{The Goal of the Talk} | 
         | 
   342  \large  | 
         | 
   343   \begin{itemize} | 
         | 
   344   \item show you that something very unintuitive happens with very large sets	  | 
         | 
   345   \bigskip\bigskip  | 
         | 
   346     | 
         | 
   347   \item convince you that there are more {\bf problems} than {\bf programs} | 
         | 
   348   \end{itemize}	 | 
         | 
   349   \end{frame} | 
         | 
   350 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   351   | 
         | 
   352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   353 \begin{frame}[t] | 
         | 
   354 %  | 
         | 
   355   \begin{center} | 
         | 
   356   \begin{tikzpicture} | 
         | 
   357    | 
         | 
   358   \draw (-5,2.5) node [scale=2.3] (X)   | 
         | 
   359     {\begin{tabular}{@ {\hspace{-3mm}}l} | 
         | 
   360      \bl{$B$ $=$ $\{$   | 
         | 
   361      \!\includegraphics[scale=0.02]{../pics/o1.jpg}, | 
         | 
   362      \includegraphics[scale=0.02]{../pics/o2.jpg}, | 
         | 
   363      \!\includegraphics[scale=0.02]{../pics/o3.jpg}, | 
         | 
   364      \includegraphics[scale=0.02]{../pics/o4.jpg}, | 
         | 
   365      \!\includegraphics[scale=0.027]{../pics/o5.jpg} | 
         | 
   366      $\}$}  | 
         | 
   367     \end{tabular}}; | 
         | 
   368       | 
         | 
   369     \draw (-6.6,-0.5) node [scale=2.3] (Y)   | 
         | 
   370     {\begin{tabular}{@ {\hspace{-3mm}}l} | 
         | 
   371      \bl{$A$ $=$ $\{$   | 
         | 
   372      \!\includegraphics[scale=0.059]{../pics/a1.jpg}, | 
         | 
   373      \includegraphics[scale=0.048]{../pics/a2.jpg}, | 
         | 
   374      \includegraphics[scale=0.02]{../pics/a3.jpg} | 
         | 
   375      $\}$}  | 
         | 
   376      \end{tabular}}; | 
         | 
   377     | 
         | 
   378      \only<1>{\draw (-5, -3) node[scale=2]  | 
         | 
   379        {\bl{$|A|$ $=$ $5$}, \bl{$|B|$ $=$ $3$}};} | 
         | 
   380      \only<2>{ | 
         | 
   381        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);  | 
         | 
   382        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-3.1, 2.1);  | 
         | 
   383        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);  | 
         | 
   384        \draw (-5, -3) node[scale=2] {then \bl{$|A|$ $\le$ $|B|$}}; | 
         | 
   385        }  | 
         | 
   386     \only<3>{ | 
         | 
   387        \draw [<-, line width=1mm, red] (-7.5, 0.2) -- (-6.1, 2.1);  | 
         | 
   388        \draw [<-, line width=1mm, red] (-7.3, 0.2) -- (-3.1, 2.1);  | 
         | 
   389        \draw [<-, line width=1mm, red] (-6, 0.2) -- (-7.5, 2.1);  | 
         | 
   390        \draw [<-, line width=1mm, red] (-4.5, 0.2) -- (-4.5, 2.1);  | 
         | 
   391        \draw [<-, line width=1mm, red] (-4.3, 0.2) -- (-1.3, 2.1);  | 
         | 
   392          | 
         | 
   393        \draw (-5, -3) node[scale=1.5] {\small{}for \bl{$=$} | 
         | 
   394         has to be a {\bf one-to-one} mapping}; | 
         | 
   395        }  | 
         | 
   396   | 
         | 
   397       | 
         | 
   398   \end{tikzpicture} | 
         | 
   399   \end{center} | 
         | 
   400   | 
         | 
   401 \end{frame} | 
         | 
   402 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   403   | 
         | 
   404 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   405 \begin{frame}[c] | 
         | 
   406 \frametitle{Cardinality} | 
         | 
   407   | 
         | 
   408 \Large  | 
         | 
   409 \bl{$|A|$} $\dn$ ``how many elements''\bigskip\\ | 
         | 
   410   | 
         | 
   411 \bl{$A \subseteq B  \Rightarrow |A| \leq |B|$}\bigskip\\\pause | 
         | 
   412   | 
         | 
   413 if there is an injective function \bl{$f: A \rightarrow B$} then \bl{$|A| \leq |B|$}\ | 
         | 
   414   | 
         | 
   415 \begin{center} | 
         | 
   416 \bl{\large$\forall x y.\; f(x) = f(y) \Rightarrow x = y$} | 
         | 
   417 \end{center} | 
         | 
   418 \end{frame} | 
         | 
   419 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   420   | 
         | 
   421 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   422 \begin{frame}[t] | 
         | 
   423   | 
         | 
   424   \begin{center} | 
         | 
   425   \begin{tikzpicture} | 
         | 
   426     | 
         | 
   427   \draw (-6.6,2.5) node [scale=2.3] (X)   | 
         | 
   428     {\begin{tabular}{@ {\hspace{-3mm}}l} | 
         | 
   429      $A$ $=$ $\{$   | 
         | 
   430      \!\includegraphics[scale=0.02]{../pics/o1.jpg}, | 
         | 
   431      \includegraphics[scale=0.02]{../pics/o2.jpg}, | 
         | 
   432      \!\includegraphics[scale=0.02]{../pics/o3.jpg} | 
         | 
   433      $\}$  | 
         | 
   434     \end{tabular}}; | 
         | 
   435       | 
         | 
   436     \draw (-6.6,-0.5) node [scale=2.3] (Y)   | 
         | 
   437     {\begin{tabular}{@ {\hspace{-3mm}}l} | 
         | 
   438      $B$ $=$ $\{$   | 
         | 
   439      \!\includegraphics[scale=0.059]{../pics/a1.jpg}, | 
         | 
   440      \includegraphics[scale=0.048]{../pics/a2.jpg}, | 
         | 
   441      \includegraphics[scale=0.02]{../pics/a3.jpg} | 
         | 
   442      $\}$  | 
         | 
   443      \end{tabular}}; | 
         | 
   444    \onslide<3->{\draw (-7, -3) node[scale=1.5]  | 
         | 
   445       {then \bl{$|A|$ \alert{$=$} $|B|$}};} | 
         | 
   446      \only<1>{ | 
         | 
   447        \draw [->, line width=1mm, red] (-7.4, 0.2) -- (-6.1, 2.1);  | 
         | 
   448        \draw [->, line width=1mm, red] (-5.8, 0.2) -- (-4.3, 2.1);  | 
         | 
   449        \draw [->, line width=1mm, red] (-4.5, 0.2) -- (-7.6, 2.1);  | 
         | 
   450      }  | 
         | 
   451     \only<2->{ | 
         | 
   452        \draw [<-, line width=1mm, blue] (-7.5, 0.2) -- (-7.5, 2.1);  | 
         | 
   453        \draw [<-, line width=1mm, blue] (-5.8, 0.2) -- (-4.3, 2.1);  | 
         | 
   454        \draw [<-, line width=1mm, blue] (-4.5, 0.2) -- (-6.1, 2.1);  | 
         | 
   455        }  | 
         | 
   456      | 
         | 
   457       | 
         | 
   458   \end{tikzpicture} | 
         | 
   459   \end{center} | 
         | 
   460   | 
         | 
   461 \end{frame} | 
         | 
   462 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   463   | 
         | 
   464   | 
         | 
   465 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   466 \begin{frame}[c] | 
         | 
   467 \frametitle{Natural Numbers} | 
         | 
   468   | 
         | 
   469 \Large  | 
         | 
   470 \bl{$\mathbb{N}$} \bl{$\dn$} \bl{$\{0, 1, 2, 3, .......\}$}\bigskip\pause  | 
         | 
   471   | 
         | 
   472 \bl{$A$} is \alert{countable} iff \bl{$|A| \leq |\mathbb{N}|$} | 
         | 
   473   | 
         | 
   474 \end{frame} | 
         | 
   475 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   476   | 
         | 
   477 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   478 \begin{frame}[c] | 
         | 
   479 \frametitle{First Question} | 
         | 
   480   | 
         | 
   481 \Large  | 
         | 
   482 \bl{$|\mathbb{N} - \{0\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip  | 
         | 
   483   | 
         | 
   484 \large  | 
         | 
   485 \bl{$\geq$} or \bl{$\leq$} or \bl{$=$} ? | 
         | 
   486 \bigskip\bigskip\bigskip\pause  | 
         | 
   487   | 
         | 
   488 \bl{$x$ $\mapsto$ $x + 1$},\\  \bl{$|\mathbb{N} - \{0\}|$ $=$   | 
         | 
   489 $|\mathbb{N}|$} | 
         | 
   490 \end{frame} | 
         | 
   491 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   492   | 
         | 
   493 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   494 \mode<presentation>{ | 
         | 
   495 \begin{frame}[c] | 
         | 
   496   | 
         | 
   497 \Large  | 
         | 
   498 \bl{$|\mathbb{N} - \{0, 1\}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\pause  | 
         | 
   499   | 
         | 
   500 \bl{$|\mathbb{N} - \mathbb{O}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip | 
         | 
   501   | 
         | 
   502 \normalsize  | 
         | 
   503 \bl{$\mathbb{O}$} $\dn$ odd numbers\quad   \bl{$\{1,3,5......\}$}\\ \pause | 
         | 
   504 \bl{$\mathbb{E}$} $\dn$ even numbers\quad   \bl{$\{0,2,4......\}$}\\ | 
         | 
   505 \end{frame}} | 
         | 
   506 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     | 
         | 
   507   | 
         | 
   508 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   509 \mode<presentation>{ | 
         | 
   510 \begin{frame}[c] | 
         | 
   511   | 
         | 
   512 \Large  | 
         | 
   513 \bl{$|\mathbb{N} \cup \mathbb{-N}|   \;\;\;\alert{?}\;\;\;  |\mathbb{N}| $}\bigskip\bigskip | 
         | 
   514   | 
         | 
   515   | 
         | 
   516 \normalsize  | 
         | 
   517 \bl{$\mathbb{\phantom{-}N}$} $\dn$ positive numbers\quad   \bl{$\{0,1,2,3,......\}$}\\ | 
         | 
   518 \bl{$\mathbb{-N}$} $\dn$ negative numbers\quad   \bl{$\{0,-1,-2,-3,......\}$}\\ | 
         | 
   519 \end{frame}} | 
         | 
   520 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   521   | 
         | 
   522 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   523 \mode<presentation>{ | 
         | 
   524 \begin{frame}[c] | 
         | 
   525   | 
         | 
   526 \Large  | 
         | 
   527 \bl{$A$} is \alert{countable} if there exists an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip | 
         | 
   528   | 
         | 
   529 \bl{$A$} is \alert{uncountable} if there does not exist an injective \bl{$f : A \rightarrow \mathbb{N}$}\bigskip\bigskip  | 
         | 
   530   | 
         | 
   531   | 
         | 
   532 countable:  \bl{$|A| \leq |\mathbb{N}|$}\\ | 
         | 
   533 uncountable:  \bl{$|A| > |\mathbb{N}|$}\pause\bigskip | 
         | 
   534   | 
         | 
   535   | 
         | 
   536 Does there exist such an \bl{$A$} ? | 
         | 
   537   | 
         | 
   538 \end{frame}} | 
         | 
   539 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   540   | 
         | 
   541 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   542   \mode<presentation>{ | 
         | 
   543   \begin{frame}[c] | 
         | 
   544   \frametitle{Hilbert's Hotel} | 
         | 
   545   | 
         | 
   546   \begin{center} | 
         | 
   547  \includegraphics[scale=0.8]{../pics/hilberts_hotel.jpg} | 
         | 
   548   \end{center} | 
         | 
   549   | 
         | 
   550   \begin{itemize} | 
         | 
   551   \item \ldots has as many rooms as there are natural numbers  | 
         | 
   552   \end{itemize} | 
         | 
   553   | 
         | 
   554   \end{frame}} | 
         | 
   555   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   556     | 
         | 
   557     | 
         | 
   558 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   559 \begin{frame}[t] | 
         | 
   560  \frametitle{\begin{tabular}{c}Real Numbers between\\[-2mm] 0 and 1\end{tabular}} | 
         | 
   561   | 
         | 
   562   \begin{center} | 
         | 
   563   \begin{tikzpicture} | 
         | 
   564   \draw [fill, color=black!50] (1,4) rectangle (2, 3);  | 
         | 
   565   \draw [fill, color=black!50] (2,3) rectangle (3, 2);  | 
         | 
   566   \draw [fill, color=black!50] (3,2) rectangle (4, 1);  | 
         | 
   567   \draw [fill, color=black!50] (4,1) rectangle (5, 0);  | 
         | 
   568   \draw (0, 0) grid (8, 5);  | 
         | 
   569   \draw [line width = 1.mm] (1,0) -- (1, 5);      | 
         | 
   570   \draw [line width = 1.mm] (0, 4) -- (8, 4);      | 
         | 
   571   \draw (0.5,3.5) node {$1$}; | 
         | 
   572   \draw (0.5,2.5) node {$2$}; | 
         | 
   573   \draw (0.5,1.5) node {$3$}; | 
         | 
   574   \draw (0.5,0.5) node {$4$}; | 
         | 
   575     | 
         | 
   576   \draw (1.5,3.5) node {\only<1>{$3$}\only<2->{$4$}}; | 
         | 
   577   \draw (2.5,3.5) node {$3$}; | 
         | 
   578   \draw (3.5,3.5) node {$3$}; | 
         | 
   579   \draw (4.5,3.5) node {$3$}; | 
         | 
   580   \draw (5.5,3.5) node {$3$}; | 
         | 
   581   \draw (6.5,3.5) node {$3$}; | 
         | 
   582   \draw (7.5,3.5) node {$\ldots$}; | 
         | 
   583     | 
         | 
   584   \draw (1.5,2.5) node {$1$}; | 
         | 
   585   \draw (2.5,2.5) node {\only<1-2>{$2$}\only<3->{$3$}}; | 
         | 
   586   \draw (3.5,2.5) node {$3$}; | 
         | 
   587   \draw (4.5,2.5) node {$4$}; | 
         | 
   588   \draw (5.5,2.5) node {$5$}; | 
         | 
   589   \draw (6.5,2.5) node {$6$}; | 
         | 
   590   \draw (7.5,2.5) node {$7$}; | 
         | 
   591   | 
         | 
   592   \draw (1.5,1.5) node {$0$}; | 
         | 
   593   \draw (2.5,1.5) node {$1$}; | 
         | 
   594   \draw (3.5,1.5) node {\only<1-3>{$0$}\only<4->{$1$}}; | 
         | 
   595   \draw (4.5,1.5) node {$1$}; | 
         | 
   596   \draw (5.5,1.5) node {$0$}; | 
         | 
   597   \draw (6.5,1.5) node {$\ldots$}; | 
         | 
   598     | 
         | 
   599    \draw (1.5,0.5) node {$7$}; | 
         | 
   600   \draw (2.5,0.5) node {$8$}; | 
         | 
   601   \draw (3.5,0.5) node {$5$}; | 
         | 
   602   \draw (4.5,0.5) node {\only<1-4>{$3$}\only<5->{$4$}}; | 
         | 
   603   \draw (5.5,0.5) node {$9$}; | 
         | 
   604   \draw (6.5,0.5) node {$\ldots$}; | 
         | 
   605     | 
         | 
   606    \draw (1.5,-0.5) node {$\ldots$}; | 
         | 
   607    \draw (8.5,3.5) node {$\ldots$}; | 
         | 
   608   \end{tikzpicture} | 
         | 
   609   \end{center} | 
         | 
   610   \mbox{}\\[-20mm]\mbox{} | 
         | 
   611     | 
         | 
   612   \onslide<6->{ | 
         | 
   613   \begin{center} | 
         | 
   614   \Large\bl{$|\mathbb{N}| < |R|$} | 
         | 
   615   \end{center} | 
         | 
   616   }  | 
         | 
   617   | 
         | 
   618 \end{frame} | 
         | 
   619 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   620   | 
         | 
   621   | 
         | 
   622 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   623 \mode<presentation>{ | 
         | 
   624 \begin{frame}[t] | 
         | 
   625  \frametitle{The Set of Problems} | 
         | 
   626   | 
         | 
   627   $\aleph_0$  | 
         | 
   628   | 
         | 
   629   \begin{center} | 
         | 
   630   \begin{tikzpicture} | 
         | 
   631   \draw [fill, color=black!50] (1,4) rectangle (2, 3);  | 
         | 
   632   \draw [fill, color=black!50] (2,3) rectangle (3, 2);  | 
         | 
   633   \draw [fill, color=black!50] (3,2) rectangle (4, 1);  | 
         | 
   634   \draw [fill, color=black!50] (4,1) rectangle (5, 0);  | 
         | 
   635   \draw (0, 0) grid (8, 5);  | 
         | 
   636   \draw [line width = 1.mm] (1,0) -- (1, 5);      | 
         | 
   637   \draw [line width = 1.mm] (0, 4) -- (8, 4);      | 
         | 
   638   \draw (0.5,3.5) node {$1$}; | 
         | 
   639   \draw (0.5,2.5) node {$2$}; | 
         | 
   640   \draw (0.5,1.5) node {$3$}; | 
         | 
   641   \draw (0.5,0.5) node {$4$}; | 
         | 
   642     | 
         | 
   643   \draw (1.5,4.5) node {$0$}; | 
         | 
   644   \draw (2.5,4.5) node {$1$}; | 
         | 
   645   \draw (3.5,4.5) node {$2$}; | 
         | 
   646   \draw (4.5,4.5) node {$3$}; | 
         | 
   647   \draw (5.5,4.5) node {$4$}; | 
         | 
   648   \draw (6.5,4.5) node {$5$}; | 
         | 
   649   \draw (7.5,4.5) node {$\ldots$};  | 
         | 
   650     | 
         | 
   651   \draw (1.5,3.5) node {$0$}; | 
         | 
   652   \draw (2.5,3.5) node {$1$}; | 
         | 
   653   \draw (3.5,3.5) node {$0$}; | 
         | 
   654   \draw (4.5,3.5) node {$1$}; | 
         | 
   655   \draw (5.5,3.5) node {$0$}; | 
         | 
   656   \draw (6.5,3.5) node {$1$}; | 
         | 
   657   \draw (7.5,3.5) node {$\ldots$}; | 
         | 
   658     | 
         | 
   659   \draw (1.5,2.5) node {$0$}; | 
         | 
   660   \draw (2.5,2.5) node {$0$}; | 
         | 
   661   \draw (3.5,2.5) node {$0$}; | 
         | 
   662   \draw (4.5,2.5) node {$1$}; | 
         | 
   663   \draw (5.5,2.5) node {$1$}; | 
         | 
   664   \draw (6.5,2.5) node {$0$}; | 
         | 
   665   \draw (7.5,2.5) node {$0$}; | 
         | 
   666   | 
         | 
   667   \draw (1.5,1.5) node {$0$}; | 
         | 
   668   \draw (2.5,1.5) node {$0$}; | 
         | 
   669   \draw (3.5,1.5) node {$0$}; | 
         | 
   670   \draw (4.5,1.5) node {$0$}; | 
         | 
   671   \draw (5.5,1.5) node {$0$}; | 
         | 
   672   \draw (6.5,1.5) node {$\ldots$}; | 
         | 
   673     | 
         | 
   674    \draw (1.5,0.5) node {$1$}; | 
         | 
   675   \draw (2.5,0.5) node {$1$}; | 
         | 
   676   \draw (3.5,0.5) node {$0$}; | 
         | 
   677   \draw (4.5,0.5) node {$1$}; | 
         | 
   678   \draw (5.5,0.5) node {$1$}; | 
         | 
   679   \draw (6.5,0.5) node {$\ldots$}; | 
         | 
   680     | 
         | 
   681   \draw (1.5,-0.5) node {$\ldots$}; | 
         | 
   682    \draw (8.5,3.5) node {$\ldots$}; | 
         | 
   683   | 
         | 
   684   \end{tikzpicture} | 
         | 
   685   \end{center} | 
         | 
   686     | 
         | 
   687     | 
         | 
   688   \onslide<2>{ | 
         | 
   689   \begin{center} | 
         | 
   690   \large \bl{|Progs| $=$ $|\mathbb{N}|$ $<$ |Probs|} | 
         | 
   691  \end{center} | 
         | 
   692   }  | 
         | 
   693   | 
         | 
   694   | 
         | 
   695 \end{frame}} | 
         | 
   696 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   697   | 
         | 
   698   | 
         | 
   699 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   700 \mode<presentation>{ | 
         | 
   701 \begin{frame}[c] | 
         | 
   702 \frametitle{Halting Problem} | 
         | 
   703   | 
         | 
   704 \large  | 
         | 
   705 Assume a program \bl{$H$} that decides for all programs \bl{$A$} and all  | 
         | 
   706 input data \bl{$D$} whether\bigskip | 
         | 
   707   | 
         | 
   708 \begin{itemize} | 
         | 
   709 \item \bl{$H(A, D) \dn 1$} iff \bl{$A(D)$} terminates | 
         | 
   710 \item \bl{$H(A, D) \dn 0$} otherwise | 
         | 
   711 \end{itemize} | 
         | 
   712   | 
         | 
   713 \end{frame}} | 
         | 
   714 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   715   | 
         | 
   716 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   717 \mode<presentation>{ | 
         | 
   718 \begin{frame}[c] | 
         | 
   719 \frametitle{Halting Problem (2)} | 
         | 
   720   | 
         | 
   721 \large  | 
         | 
   722 Given such a program \bl{$H$} define the following program \bl{$C$}: | 
         | 
   723 for all programs \bl{$A$}\bigskip | 
         | 
   724   | 
         | 
   725 \begin{itemize} | 
         | 
   726 \item \bl{$C(A) \dn 0$} iff \bl{$H(A, A) = 0$}  | 
         | 
   727 \item \bl{$C(A) \dn$ loops} otherwise | 
         | 
   728 \end{itemize} | 
         | 
   729   | 
         | 
   730 \end{frame}} | 
         | 
   731 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   732   | 
         | 
   733 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   734 \mode<presentation>{ | 
         | 
   735 \begin{frame}[c] | 
         | 
   736 \frametitle{Contradiction} | 
         | 
   737   | 
         | 
   738   | 
         | 
   739 \bl{$H(C, C)$} is either \bl{$0$} or \bl{$1$}. | 
         | 
   740   | 
         | 
   741 \begin{itemize} | 
         | 
   742 \item \bl{$H(C, C) = 1$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)\downarrow$} $\stackrel{\text{def}\,C}{\Rightarrow}$ \bl{$H(C, C)=0$}  | 
         | 
   743 \item \bl{$H(C, C) = 0$} $\stackrel{\text{def}\,H}{\Rightarrow}$ \bl{$C(C)$} loops $\stackrel{\text{def}\,C}{\Rightarrow}$\\  | 
         | 
   744 \hspace{7cm}\bl{$H(C, C)=1$}  | 
         | 
   745 \end{itemize} | 
         | 
   746   | 
         | 
   747 Contradiction in both cases. So \bl{$H$} cannot exist. | 
         | 
   748   | 
         | 
   749 \end{frame}} | 
         | 
   750 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   751   | 
         | 
   752 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  | 
         | 
   753   \mode<presentation>{ | 
         | 
   754   \begin{frame}[c] | 
         | 
   755   \frametitle{Take Home Points} | 
         | 
   756  \large  | 
         | 
   757    | 
         | 
   758   \begin{itemize} | 
         | 
   759   \item there are sets that are more infinite than others\bigskip  | 
         | 
   760   \item even  with the most powerful computer we can imagine, there   | 
         | 
   761   are problems that cannot be solved by any program\bigskip\bigskip  | 
         | 
   762     | 
         | 
   763   \item in CS we actually hit quite often such problems (halting problem)  | 
         | 
   764   \end{itemize} | 
         | 
   765   | 
         | 
   766   \end{frame}} | 
         | 
   767   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    | 
         | 
   768     | 
   230 \end{document} | 
   769 \end{document} | 
   231   | 
   770   | 
   232 %%% Local Variables:    | 
   771 %%% Local Variables:    | 
   233 %%% mode: latex  | 
   772 %%% mode: latex  | 
   234 %%% TeX-master: t  | 
   773 %%% TeX-master: t  |